Etude sur les usages de l’amiante et la gestion des déchets amiantés en Tunisie

Rapport Final de l’Etude (Synthèse)

Décembre 2014
TABLE DES MATIERES

Note de Synthèse

1 Introduction ... 21
 1.1 Cadre de l’étude ... 21
 1.2 Organigramme d’étude .. 21
 1.3 Objectifs de l’étude ... 22
 1.4 Organismes et pays de référence .. 23

2 Usages de l’amiante, conséquences et raisons de son éradication .. 24
 2.1 Epidémiologie et conséquences de l’exposition à l’amiante .. 24
 2.2 Eradication de l’amiante .. 25
 2.3 Produits de substitution de l’amiante ... 26
 2.4 L’amiante en Tunisie ... 27
 2.4.1 Historique et situation de l’usage de l’amiante en Tunisie .. 27
 2.4.2 Amiante et produits à base d’amiante importés, données douanières 28
 2.4.3 Les sites pollués des usines de transformation de l’amiante ... 28
 2.4.4 Les infrastructures et organismes gros consommateurs de l’amiante 29
 2.4.5 Autres secteurs, autres lieux et autres produits .. 31

3 Inventaire exhaustif des produits et déchets contenant de l’amiante .. 32
 3.1 Enquête et choix des sites à échantillonner ... 32
 3.2 Résultats d’analyses ... 33
 3.2.1 Résultats des analyses d’amiante de matériaux ... 33
 3.2.2 Analyses d’échantillons de l’air ambiant ... 34
 3.2.3 Inspection des sites d’usines de fabrication de produits d’amiante ciment 35
 3.2.4 Les organismes gros utilisateurs de produits amiantés .. 35
 3.3 Base de données et SIG issue de l’inventaire réalisé .. 36
 3.4 Analyse quantitative des déchets d’amiantes et leur gestion dans le temps 36
 3.4.1 Matériaux contenant de l’amiante par ministère ... 37
 3.4.2 Quantités des conduites en amianté ciment par consommateur .. 46
 3.4.3 Estimation des quantités de déchets d’amiante et d’amiante ciment 49
 3.4.4 Récapitulatif .. 52
 3.4.5 Gestion actuelle des déchets en amianté ciment ... 52
 3.4.6 Produits utilitaires et biens amiantés, autres que ceux en amianté ciment 53

4 Comparaison aux normes et limites d’exposition internationales ... 54
 4.1 Normes limites fixées pour l’air ambiant et pour l’exposition à l’amiante 54
 4.2 Applications: comparaison aux investigations des lieux d’étude ... 54

5 Analyse du risque lié à l’amiante .. 55
 5.1 Méthodologie d’évaluation du risque ... 55
5.1.1 Evaluation du risque des matériaux ... 55
5.1.2 Outils d’évaluation du risque matériaux .. 56
5.1.3 Applications .. 57
5.1.4 Interdiction de l’usage de l’amiante et incidences économiques au long terme 58
6 Schémas de Gestion des Déchets Amiantés ... 70
 6.1 Schémas de gestion des déchets d’amiante existants .. 70
 6.1.1 Préservation et manutention des déchets et de leurs décharges existantes 70
 6.2 Gestion et élimination des déchets futurs ... 74
 6.2.1 Organismes et techniciens spécialisés pour l’enlèvement de l’amiante 74
 6.2.2 Transport de l’amiante ... 75
 6.2.3 Elimination de l’amiante .. 75
 6.2.4 Les décharges d’amiante en Europe ... 77
 6.2.5 Proposition pour le cas de la Tunisie ... 79
 6.3 Outils juridiques disponibles: étude de dépollution et étude d’impact social et environnemental .. 80
7 Plan d’action pour la gestion des produits et déchets contenant de l’amiante 81
 7.1 Les différents scénarios ... 81
 7.1.1 Le scénario sans interdiction ... 81
 7.1.2 Le scénario avec interdiction de l’amiante ... 82
 7.1.3 Récapitulatif des scénarios .. 83
 7.2 Principe pollueur-payeur et responsabilités ... 83
 7.3 Expérience étrangère pour la gestion des déchets d’amiante 84
 7.4 Actions et structures à mettre en place pour la gestion des produits et déchets d’amiante 85
 7.4.1 Quantitatifs des matériaux amiantés à éliminer .. 85
 7.4.2 Actions et filières à mettre en place pour renforcer la gestion des déchets d’amiante 95
 7.4.3 Sensibilisation, études de faisabilité du désamiantage et formation 97
 7.4.4 Désamiantage et mise en décharge de l’amiante ... 97
 7.5 Mécanismes de financement ... 97
 7.6 Suivi au long terme .. 98
 7.7 Mesures d’accompagnement ... 98
 7.8 Récapitulatif des coûts de mise en œuvre du plan d’action 99
8 Plan d’Action Global pour le Desamiantage .. 100
 8.1 Création d’une Unité de Gestion du Projet Amiante (UGPA) 100
 8.2 Préparation du cadre institutionnel et réglementaire .. 101
 8.3 Etude technico-économique et création possible d’un Fonds de Désamiantage National 101
 8.4 Mission nationale d’identification et de caractérisation des lieux et des biens pollués par les produits et les déchets contenant de l’amiante, 102
 8.5 Programme d’études et de sensibilisation aux dangers de l’amiante, 102
8.5.1 Action globale .. 102
8.5.2 Immeubles bâtis publics .. 102
8.5.3 Programme de sensibilisation des organismes gros consommateurs et actions 103
8.5.4 Programmes de formation .. 103
8.6 Coûts estimatifs de l’Appui au Plan d’Action .. 104
8.7 Echéancier du plan d’action .. 104
8.8 Administrations et acteurs impliqués dans la mise en œuvre du plan d’action 106
8.9 Moyens de financement .. 106
9 Règlementations pour le désamiantage ... 107
9.1 Expériences étrangères sur l’amiante .. 107
9.2 Etude des différentes mesures réglementaires prises dans les pays étrangers 109
9.3 Evolution de la législation en Europe .. 112
9.4 Proposition d’une réglementation pour la Tunisie .. 117
10 Guide pour la reconnaissance et l’enlèvement de l’amiante 122
10.1 Introduction ... 122
10.2 Cas le plus complexe : maintenance et enlèvement d’amiante dans les bâtiments 122
10.3 Résumé de d’ensemble des dispositions législatives applicables en Europe 131
11 Atelier de restitution ... 133

ANNEXE :
Annexe 1 : Texte de loi proposé (en français et en arabe)
Annexe 2 : PV de l’atelier de restitution
Annexe 3 : Guide méthodologique pour la gestion des déchets en amiantes (en français, en anglais et en arabe)
Liste des tableaux

Tableau 2-1. Produits de substitution de l’amiante selon ses usages, utilisés dans le domaine industriels .. 26
Tableau 2-2. Nomenclature douanière des produits et articles contenant de l’amiante, importés en Tunisie ... 28
Tableau 2-3. Linéaires de conduites en amiant ciment des infrastructures et équipement nationaux. Source : SONEDE, ONAS et CRDA. ... 31
Tableau 3-1. Résultats des investigations concernant les produits et déchets d’amiante ciment de l’ONAS .. 36
Tableau 3-2. Récapitulatif des déchets et des produits en amiant ciment à prévoir à différentes échanges pour les organismes gros consommateurs d’amiante ciment ... 51
Tableau 3-3. Récapitulatif des estimants de déchets d’amiante et d’amiante-ciment, produits à court, moyen et long termes à l’échelle du Pays .. 52
Tableau 5-1. Procédure d’évaluation du risque lié aux matériaux identifiés contenant de l’amiante. 55
Tableau 5-2. Degrés de risques liés à la présence d’amiante dans les matériaux de construction inspectés .. 56
Tableau 5-3. Matériaux à risque moyen selon le lieu indiqué .. 60
Tableau 5-4. Matériaux à risque faible à très faible, selon le lieu indiqué ... 63
Tableau 7-1. Récapitulatif des quantités des conduites en AC chez les gros consommateurs 85
Tableau 7-2. Estimations des déchets en amiant ciment qui seront produits par les bâtiments publics des Ministères à l’échelle du Pays .. 86
Tableau 7-3. Dépenses pour la sensibilisation, les études de faisabilité du désamiantage et pour la formation .. 97
Tableau 7-4. Dépenses de création d’une décharge commune ex-situ pour l’ensemble des déchets d’amiante à l’échelle du pays ... 97
Tableau 9-1. Quantité de fibres par millilitre autorisée sur huit heures de travail..................................... 110
NOTE DE SYNTHESE

La présente étude est consacrée à l’évaluation des différentes catégories d’amiantes, leurs usages à l’échelle de la Tunisie, et la gestion de leurs déchets. L’objectif premier est de se prémunir contre les impacts de ces produits sur l’environnement et sur la Santé Publique en procédant d’abord à un inventaire exhaustif des matériels à base d’amiantes, leurs usages, leurs distributions sectorielles (industries, bâtiments, canalisations diverses, produits de calorifugeages,…) et leur devenir surtout lorsqu’il s’agit de leurs déchets spécifiquement dangereux et qui nécessitent des soins particuliers pour leur enlèvement et leur gestion la plus adéquate pour les mettre hors de nuisance.

Cette étude s’inscrit dans le cadre de tous les programmes d’étude et d’investigations qui visent la protection de l’environnement et de la santé publique. Elle agit de concert avec les efforts notamment des Pays européens riverains de la Méditerranée, en partant de l’examen de la situation actuelle quant à l’usage de quantités d’amiantes et l’éparpillement de leurs résidus, pour mieux asseoir les méthodes et techniques de leurs récupérations, leur élimination, mais aussi pour instaurer les meilleures prérogatives et mesures à prendre en vue du renforcement de la législation et des normes environnementales en matière d’amiance.

Compte tenu du fait qu’au cours du 20ème siècle, l’amiante avait été largement utilisé dans plusieurs secteurs (Industrie, transport automobile, construction navale, BTP, Assainissement, Agriculture, lutte contre la désertification,…) plusieurs objectifs sont visés par cette étude :

- En premier lieu, l’objectif général et de proposer un plan adéquat et opérationnel de gestion des produits à base d’amiantes et de leurs déchets, selon leurs usages sectoriels en vue de protéger l’environnement et la santé publique de la manière la plus efficace.

- En second lieu, une suite d’objectifs plus spécifiques, est invoquée :

 Au plan technique, il est proposé (1) d’étudier les différents usages de l’amiante en Tunisie, de décrire le schéma global de gestion actuelle et future des déchets non industriels d’amiantes, d’élaborer des schémas de gestion des déchets d’amiantes, (4) de construire une base de données pour le suivi au moyen et long termes des ouvrages et des produits à base d’amiantes, et des sites contaminés par l’amiante sur le territoire,

 Au plan juridique et institutionnel, analyser les textes de loi existants et proposer des adaptations nécessaires aux décrets d’applications proposés dans l’étude de 2008, en fonction des nouveaux résultats des enquêtes réalisées dans le cadre de la présente étude.

 Au plan de l’action (1) proposer un plan d’action global opérationnel pour la gestion des déchets d’amiantes et (2) établir un guide méthodologique pour la gestion de ces déchets.

L’objectif ultime de l’étude est ainsi de renforcer les mesures préventives quant à la protection de l’environnement et de la santé publique contre l’amiante, de recenser les sites à produits et déchets d’amiantes à l’échelle du Pays, et de renforcer la démarche qui associe à la protection environnementale, une réglementation législative performante pour la préservation de notre espace de vie, et une protection adéquate de notre santé.

Afin d’atteindre ces objectifs, le projet est organisé en deux phases dont les tâches sont bien précises :

Phase 1 « Inventaire des produits et déchets amiantés et étude des différents usages de l’amiante en Tunisie» visant particulièrement un inventaire des produits et déchets amiantés et leurs usages sectoriels, notamment les conduites en amianté ciment (réseau d’adduction et distribution d’eau, canalisations de drainage et d’évacuation d’eau,…), les bâtiments amiantés (calorifugeages, flocages, isolation thermique, faux-plafonds, toitures en tôles ondulées en amianté ciment,…), et autres produits (garnitures de freins, courroies de transmission à filatures en amianté chrysotile,…). Les tâches qui ont fixées pour étude sont les suivantes :

COMETE Engineering/PLINIOS SA 6
• Elaboration d’un inventaire exhaustif des produits et déchets amiantés à l’échelle du Pays
• Fiches d’information sectorielles et campagnes de mesures sur terrain.
• Elaboration d’une base de données pour le suivi des produits et sites contenant de l’amiante.
• Une étude des usages de l’amiante et déchets générés

Phase 2 « Elaboration des schémas de gestion des déchets d’amiante et proposition d’un plan d’action global de gestion des déchets amiantés » qui tient compte des résultats et des propositions de l’étude en 2008 conduite par le Ministère de l’Environnement du Développement Durable “ étude de gestion et de remise en état des sites contaminés par les déchets d’amiante et renforcement de l’aspect législatif et normatif en la matière”, traitant de trois sites industriels amiantés (SCOAC, CIAMIT ET EL MAWASSIR). Les tâches fixées pour cette phase englobent les éléments suivants :

• Elaboration de schémas de gestion des déchets d’amiante existants.
• Elaboration des schémas de gestion des déchets d’amiante générés dans le futur.
• Elaboration d’un plan global de gestion des produits et déchets amiantés.
• Cadre réglementaire et normatif pour la gestion de l’amiante.
• Elaboration d’un guide méthodologique pour la gestion des déchets d’amiante.
• Production du guide méthodologique
• Organisation d’un séminaire de restitution.

Le contenu des deux phases est récapitulé comme suit :

1. **Usages de l’amiante, conséquences et raisons de son éradication**

En plus de l’amiante en poudre ou en flocons, la Tunisie importe aussi plusieurs produits à base d’amiante, en particulier de produits en amianté ciment et des garnitures de friction pour machineries et véhicules de transport. La nomenclature douanière pour l’amiante et articles importés contenant de l’amiante, est la suivante :

Nomenclature douanière des produits et articles contenant de l’amiante, importés en Tunisie

<table>
<thead>
<tr>
<th>Code NSH</th>
<th>Produit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2524</td>
<td>Amiante en fibres, en flocons, en poudre et autre amianté</td>
</tr>
<tr>
<td>6811</td>
<td>Ouvrages en amianté ciment, cellulose-ciment ou similaires</td>
</tr>
<tr>
<td>6812</td>
<td>Amiante travaillée en fibres</td>
</tr>
<tr>
<td>6813</td>
<td>Garnitures de friction (plaques, rouleaux, bandes, segments disques, rondelles, plaquettes), non montées, pour freins, pour embrayages ou pour tous organes de frottement, à base d’amiante, ou d’autres substances minérales</td>
</tr>
</tbody>
</table>
L’analyse des données recueillies montre que pour beaucoup de produits et articles importés, l’amiante a pratiquement été abandonné et remplacé par des fibres cellulosiques, du métal, des élastomères, du PVC et PE, et autres produits de substitution, mais aussi par de la serpentine notamment dans les garnitures de friction. Ceci s’explique par le fait que dès que les pays fournisseurs de ces produits auraient eu toute la chance d’avoir banni l’usage de l’amiante, les produits industrialisés et mis sur le marché devraient en être pratiquement exempts.

En définitive, les efforts de sensibilisation conduits par les Ministères (en particulier MEDD, par les programmes de fermeture ou de reconversion des Usines) et Instances concernées (Douane, DGCCI, Organismes de Contrôle), ont bien porté leurs fruits par une réduction presque totale de l’usage en Tunisie, de l’amiante et des produits contenant de l’amiante.

2. **Inventaire exhaustif des produits et déchets contenant de l’amiante**

L’étude de 2008 a initié l’inventaire des conduites et des produits amianté et quelques bâtiments contenant de l’amiante. Elle a permis également de proposer les démarches nécessaires pour renforcer le cadre institutionnel et juridique le plus adéquat pour une éradication définitive de tout usage de l’amiante dans le Pays.

Dans cette étude on a développé l’inventaire des bâtiments contenant de l’amiante en Tunisie et on a mis à jour les données sur l’importation des produits amiantés.

Pour mieux rendre compte de la situation actuelle sur l’ensemble du territoire, nous avons procédé de la manière suivante :

- La prise en compte des résultats de l’étude 2008, surtout en ce qui concerne le programme de désamiantage des trois sites industriels précédemment cités.

- La réalisation d’une enquête auprès de tous les ministères concernés, plus particulièrement les ministères chargés de l’éducation et de la formation, de la santé, de l’agriculture, de l’environnement et de l’équipement. Ceci permet à la fois de sensibiliser les responsables de ces ministères sur les danger de produits à base d’amiante et de leurs déchets, mais aussi de tirer profit dans le cadre du projet, de leurs connaissances et de leurs expériences en ce qui concerne les foyers de concentrations des produits recherchés qui sont promus à se transformer au moyen et long termes en foyers générateurs de déchets amiantés.

Les données recueillies ont permis de sélectionner 100 sites les plus sensibles couvrant tous les secteurs de la vie économique, sur lesquels la campagne d’inspection a été conduite avec deux objectifs principaux : (1) une identification des produits à base d’amiante et (2) une analyse de l’amiante dans l’ambiance, surtout dans les lieux de travail et donc de concentration de citoyens pouvant être inéluctablement exposés et de manière continue à l’atteinte par les fibrilles d’amiante.

La stratégie d’échantillonnage employée repose sur la combinaison de l’inspection visuelle et la prise d’échantillons représentant le matériau global identifié sur les lieux.

En cours d’inspection, lorsqu’un matériel est soupçonné contenir de l’amiante, un échantillon global est prélevé pour analyse. Dans les zones ou l’on peut retrouver des quantités substantielles de matériaux d’apparence uniforme, un petit nombre d’échantillons sont prélevés, considérés représentatifs de toute une zone. Par conséquent, des matériaux visuellement similaires dans la même zone, sont supposés contenir de l’amiante de manière similaire.

La procédure d’analyse des échantillons comprend les étapes suivantes:

- **Un contrôle visuel préliminaire de l’échantillon afin de déterminer sa nature et d’établir le traitement approprié.**
- **Un traitement de l’échantillon qui permet d’isoler et détecter les fibres.**
- **Une recherche détaillée et approfondie au microscope polarisant afin d’identifier les fibres détectées.**

Les résultats d’analyses de l’amiante dans les matériaux prélevés dans les lieux inspectés, bâtiments et servitudes connexes, sont présentés en Annexe 2. Au total, 100 bâtiments ont été sélectionnés à la coopération avec la DGEQV pour faire partie de la campagne d’échantillonnage, on a pu accéder uniquement à 82 sites répartis à l’échelle du Pays qui ont été inspectés, dans lesquels des échantillons ont été prélevés pour toutes les composantes d’infrastructures soupçonnées de contenir de l’amiante (sols, plafonds, murs, conduites, toitures, isolation, ...). Ont ainsi été collectés et analysés au total 250 échantillons de matériaux dont la plupart ont montré la présence d’amiante crocidolite, ou un mélange crocidolite/chrysotile. Les résultats obtenus pour les différents lieux inspectés peuvent être résumés de la manière suivante :

- **Sur les 222 échantillons prélevés à l’échelle du Pays, et dont plusieurs (2 à 19 éch.) peuvent appartenir au même site inspecté (El Mawassir, SICOAC, CIAMIT, Hôpitaux, Centres d’éducation et de formation, etc.), 129 échantillons ont révélé la présence manifeste d’amiante chrysotile ou même un mélange crocidolite + chrysotile.**
- **Sur les 89 lieux d’inspection, 29 sites se sont avérés présenter des composantes formées de chrysotile et d’autres contenant un mélange crocidolite-chrysotile.**
- **Le mélange crocidolite-chrysotile se retrouve le plus souvent dans les conduites de servitudes et dans les toitures en amiantel ciment. Ce type d’amiante a été utilisé de manière trop fréquente avant les années 1990s.**
- **Sur les 89 sites inspectés, 18 ont révélé des composantes à base de chrysotile (conduites, toitures, bardages, isolation)**
- **Seuls 05 sites se sont révélés indemnes de composante contenant de l’amiante, malgré les soupçons affichés sur ces lieux par les spécialistes en cours d’inspection.**

Ces résultats de l’inspection portant sur un échantillon représentatif des lieux fortement fréquentés par la population, montre la présence trop fréquente de produits ou de déchets à base d’amiante auxquels les visiteurs ou occupants des lieux peuvent être trop facilement exposés.

Aussi il important de mentionner que si pour l’heure, l’amiante utilisée quelque soit sa forme (chrysotile souple, ou crocidolite dure et plus dangereuse que la forme précédente) est relativement stabilisée quant au départ de ses microfibrilles dans l’air, puisque la majorité des produits à amianté inspectés sont des tôles et conduites en amianté-ciment, il n’en sera surement pas de même lorsque ces matériaux amiantés vieillissent ou qu’il puisse subir une avarie, un bris ou une démolition, en l’absence des précautions strictes et nécessaires à prendre dans l’une ou l’autre de ces situations.

Le prélèvement de 89 échantillons de micofibrilles d’amiante dans l’air a été réparti dans soixante huit (68) sites pour tout le Pays.

Les résultats d’analyses effectuées par le Laboratoire PLINIOS ont permis les constatations majeures suivantes :

COMETE Engineering/PLINIOS SA
• Pour la majorité des sites inspectés et échantillonnés pour les microfibrilles d’amiante dans l’ambiance, les concentrations sont inférieures à la limite de détection de l’appareillage (<0,01 f/cm³).
• Au site de l’Usine CIAMIT à Bizerte, quatre échantillons prélevés dans le bâtiment principal ont donné des concentrations variant de 0,012 à 0,017 f/cm³.
• A l’Usine EL Mawassir à Bir Mcherga, un échantillon prélevé dans l’unité de production de plaques de fibrociment, a donné 0,014 f/cm³, et un autre près dans l’ancienne unité de production de conduites en amianté-ciment, a révélé 0,015 f/cm³.
• A l’Usine SICOAC au Jebel Jloud, quatre échantillons se sont révélés contenir des concentrations de microfibrilles de valeurs inférieures à la limite de détection de l’appareillage.

3. Bilan global des quantités de l’amiante à existerantes et projection

Les informations en cours d’enquête et l’examen de l’état des lieux des bâtiments recelant des produits surtout sous forme d’amiante ciment, peuvent être résumées comme suit :
• L’inventaire et l’examen dans le cadre de cette étude, des bâtiments surtout publics, à fortes concentration d’occupants et de visiteurs, permettent d’estimer la quantité réelle de déchets en amianté et amianté ciment à un total de 5637 tonnes (y compris les tôles en amianté).

L’estimation des quantités des matériaux contenant l’amiante et se trouvant au niveau des bâtiments publiques inventoriés a été répartie par ministère comme suit :

<table>
<thead>
<tr>
<th>Ministère</th>
<th>Quantité (Tonne)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ministère de l’Éducation et de l’Enseignement</td>
<td>522,598</td>
</tr>
<tr>
<td>Ministère de l’Agriculture</td>
<td>1982,100</td>
</tr>
<tr>
<td>Ministère de l’Equipement et de l’Environnement</td>
<td>18,650</td>
</tr>
<tr>
<td>Ministère de transport</td>
<td>526,750</td>
</tr>
<tr>
<td>Ministère de l’Intérieur et de Développement locale</td>
<td>1897,400</td>
</tr>
<tr>
<td>Ministère de la santé publique</td>
<td>688,750</td>
</tr>
<tr>
<td>Total (tonne)</td>
<td>5 637</td>
</tr>
</tbody>
</table>

Les quantités de produits à base d’amiante qui devront être traités et éliminés au moyen et long terme sont de loin les plus importants au plan quantité. Ainsi, environ millions de tonnes de déchets et de rebus en amianté ciment constituent le devenir au cours des trois prochaines décennies de l’amiante ciment surtout des réseaux et équipements publics nationaux, et en partie des utilitaires bâtiments.
• Les quantités de déchets résiduels dans les trois usines fabriquant de produits en amianté ciment, sont aussi considérables et concentrés dans les limites desdites usines, ce qui constitue un cas relativement préoccupant et qui nécessite un suivi et une intervention au court et moyen terme. Ces quantités sont estimées à 400 tonnes de déchets dans les trois usines. A cette quantité, il faut ajouter également le stock d’amiante en place à l’usine EL Mawassir, évalué à 250 tonnes. D’après enquête, ce stock pourrait être vendu et réexporté dans le cadre du programme de la réconversion définitive de cette usine prévu pour la fin 2013.
• Parmi les organismes gros consommateurs de produits en amianté ciment, l’ONAS, la SONEDE et les CRDAs disposent de grandes quantités de conduites, mais aussi de rebus de conduites en amianté ciment et déchets. D’après les informations recueillies auprès des instances concernées, les estimations de déchets produits sur 50 ans, approximative (1960-2010), en plus de conduites en stocks, sont données dans le tableau suivant.
L'estimation des quantités de déchets provenant des stocks actuels dans les parcs des organismes gros consommateurs d’amiante ciment, et des déchets et rebus produits par ces organismes sur une période de 10 ans, s’élève à 45090 tonnes (en considérant une moyenne de 100 kg par un ml de conduite amianté ciment), ce qui est considérable. Ce sont ici des déchets qui doivent être traités au court terme.

- Pour le cas des privés, les quantités qui sont utilisées (tôles de couverture dans les hangars et les fermes agricoles, calorigueage et flocage dans les cliniques et établissements hôteliers, quelques immeubles et écoles privé, les produits commercialisés dans les industries de peintures, d’étanchéité et les pièces mécaniques) ne sont pas incluses dans cet inventaire qui n’a considéré que les établissements publics. En l’absence d’une conscience du danger de l’amiante sur la santé, les privés ne sont pas encore prêts pour coopérer sur ce sujet et fournir les informations nécessaires pour notre inventaire. Mais, selon l’expérience des responsables dans certaines administrations en contact direct avec les privés sur les questions liées à l’hygiène des milieux et l’inspection des établissements privés (ANCSEP, ANPE, DHMPE, ANGed, ...), on a pu estimer la quantité à 30% des quantités présentes dans les établissements étatique. Tout calcul fait, la quantité des produits amiantés dans le secteur privé s’élève à environ 2000 tonnes de produits et déchets contenant l’amiante.

L’estimation des quantités réelles de déchets en amianté selon l’échéance de leur production, peut être récapitulée de la manière suivante :

<table>
<thead>
<tr>
<th>Localisation du produit</th>
<th>Déchets à Court Term (10 ans) en Tonnes</th>
<th>Déchets à Moyen et Long Termes en Tonnes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bâtiments inventoriés (tôles+conduites)</td>
<td>5 637</td>
<td>0</td>
</tr>
<tr>
<td>Bâtiments privés</td>
<td>2000</td>
<td>0</td>
</tr>
<tr>
<td>Déchets d’usines</td>
<td>650</td>
<td>0</td>
</tr>
<tr>
<td>Organismes gros consommateurs d’amiante ciment</td>
<td>45 090</td>
<td>3 520 694</td>
</tr>
<tr>
<td>TOTAL DE DECHETS</td>
<td>53 377</td>
<td>3 520 694</td>
</tr>
</tbody>
</table>

Il est clair que les quantités énormes de déchets d’amiante-ciment qui seront produits au court, moyen et long terme, incite à une solution urgente pour assurer la mise de ces produits dans une décharge de produits dangereux.

4. Comparaison des résultats obtenus par rapport aux normes et limites d’exposition internationales

En considérant les résultats des analyses d’échantillons d’air dans tous les bâtiments (en dehors des Usines d’El Mawassir-Bir Mcherga et CIAMIT-Bizerte), la pollution par des fibres d’amiante n’a pas été détectée dans l’air. En Tunisie, aucune limite n’est encore admise. Dès le moment que toutes les concentrations sont inférieures à la limite admise pour la propreté de l’air de 0.010 fibres par cm3 comme expliqué précédemment (Directives Européennes et Dispositions internationales), l’ambiance dans ces bâtiments peut être considérée comme propre, et donc sans risques pour les occupants.

Ces faibles concentrations (inférieures à la limite de détection de l’appareillage et la limite de propreté de l’air) montrent qu’il n’existe pas de risque immédiat pour la santé des occupants des bâtiments visités, du moins dans l’état dans lequel se trouvent aujourd’hui les matériaux amiantés y existants, et en l’absence de causes de dégradations possibles de ces matériaux pouvant survenir.

Cette situation se présente pour la majorité des installations et bâtiments visités démunis de matériaux amiantés friables (tôles et conduites en amianté ciment, carreaux de vinyle amianté du sol) Ces matériaux non friables livrent difficilement leurs fibres d’amiante dans l’air. Néanmoins,
toute intervention pouvant provoquer la détérioration de ces matériaux peut provoquer la contamination de l’air en particulier à l’intérieur des bâtiments et locaux, surtout ceux qui manquent d’une ventilation adéquate.

En ce qui concerne les concentrations de fibres d’amiante mesurées dans les usines de fabrication de produits à base d’amiante (El Mawassir avec 0,014 à 0,015 fibres/cm³ ; CIAMIT : 0,013 à 0,017 fibres/cm³), la situation était tout à fait prévisible, étant donné la forte contamination de ces sites par de l’amiante friable et des poussières en émanant. De plus, ces n’ont pas encore été décontaminés de manière adéquate et proprement, en procédant à des méthodes hautement standard comme de pratique selon les meilleures pratiques dans ce domaine, à une échelle internationale, en réponse à la Législation Européenne par exemple. Les concentrations mesurées dans l’air, bien que supérieures à la limite de propreté définie pour l’air ambiant (0,010 fibres par cm³), elles demeurent inférieures à la valeur limite définie pour l’exposition des personnes aux fibres d’amiante (0.1 fibres par cm³ (8h TWA)).

Comme solution immédiate pour la réduction des concentrations de fibres d’amiante dans l’air, et donc de la contamination, plusieurs proposition ont été suggérées dans ce rapport.

5. Analyse du risque lié à l’amiante

Tous les matériaux amiantés identifiés dans les bâtiments sont introduits dans un système de notation prioritaire pour l’évaluation des risques. Ce système permettra au client de planifier toutes les mesures d’élimination et de correction.

Pour les matériaux, il s’agit essentiellement des paramètres suivants : Nature du produit, quantité et étendue des dommages et détériorations constatés, le ou les traitements de surface des matériaux utilisés, et la nature elle-même de l’amiante comme identifié par analyse.

Différentes catégories de risque sont possibles, dont chacune nécessite une procédure d’intervention : Elevé, Moyen, Faible, Très faible et Mineur.

6. Gestion des déchets en amiante

Les résultats des investigations apportés dans ce travail montrent que des quantités importantes d’amiante ont investi plusieurs secteurs, notamment les infrastructures et équipements de base dans pratiquement tous les gouvernorats du Pays. En se basant dans une première approximation sur la quantité totale d’amiante brut importé et transformé dans les trois usines nationales (SICOAC, CIAMIT et EL Mawassir dans la période 1962-2012, soit environ 121 000 tonnes, et sur leurs capacités déclarées de production en amiante ciment, on peut estimer une quantité totale (produits + déchets) de l’ordre de 1,12 millions de tonnes en AC. La partie majeure de cette quantité existe :

- Sur les sites des usines où les résidus d’amiante ciment et déchets classés comme dangereux ont déjà fait l’objet d’une mise en décharge contrôlée sur les deux sites de CIAMIT et de SICOAC ; un programme similaire a aussi été proposé pour l’usine d’El Mawassir dans l’étude 2008 et qui devrait être mis en exécution après la reconversion de cette usine en 2013 ;
- Comme réseaux d’infrastructures et équipements de base nationaux (ONAS, SONEDE, CRDAs), où des stocks et des rebus de conduites en amiante ciment existent sur les sites mêmes de districts de ces organismes ; ainsi, un total linéaire de 35 550 km (34 474 km de conduites installées et 76,4 km de conduites en stocks pour maintenance des réseaux) de conduites en AC.
• Comme éléments formant partie intégrante de bâtiments divers (conduites, tôles ondulées et plaques de toits, toitures d’abris, de hangars, ou d’étables…), dans des lieux publics parfois hautement fréquentés par la population (hôpitaux, écoles, administrations, …) comme révélé par les investigations conduites dans cette étude.

La prise de conscience du danger de l’amiante, et la tendance à la décision de bannir définitivement son usage en Tunisie à l’instar des Pays voisins, surtout ceux de la rive Nord de la Méditerranée, débouche sur un certain nombre de mesures nécessaires à prendre surtout pour la décennie en cour et celle à venir.

Actuellement sur le territoire Tunisien, il existe environ 16 377 tonnes de déchets amiantés (conduites en stock + bâtiments public et privés + les 3 usines).

Des actions sont urgentes pour atténuer les effets de ce produit tel que la mise en œuvre de mesures au plan juridique et institutionnel et l’interdiction de l’usage de l’amiante et incidences économiques au long terme.

On a proposé dans ce chapitre des procédures pratiques pour la gestion des déchets contenant de l’amiante, en attendant un plan d’action adéquat qui sera préparé dans la phase suivante de l’étude.

Pour ce qui concerne la gestion des déchets amiantés durant les dix ans suivants, et en considérant les quantités des conduites AC stockés et programmées pour l’enlèvement ou le remplacement, les bâtiments contenant de l’amiante et les 3 sites industriels, on estime les quantités annuels suivantes :

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Conduite (ONAS, CRDA et SONEDE)</td>
<td>8090</td>
<td>7400</td>
<td>3700</td>
<td>3700</td>
<td>3700</td>
<td>3700</td>
<td>3700</td>
<td>3700</td>
<td>3700</td>
<td>3700</td>
<td>45 090</td>
</tr>
<tr>
<td>Bâtiments Publics</td>
<td>1137</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>5 637</td>
</tr>
<tr>
<td>Bâtiments Privés</td>
<td>200</td>
<td>2 000</td>
</tr>
<tr>
<td>CIAMIT, MAWASSIR et SICOAC</td>
<td>650</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>650</td>
</tr>
<tr>
<td>Total</td>
<td>10077</td>
<td>8100</td>
<td>4400</td>
<td>4400</td>
<td>4400</td>
<td>4400</td>
<td>4400</td>
<td>4400</td>
<td>4400</td>
<td>4400</td>
<td>53 377</td>
</tr>
</tbody>
</table>

Dans ces chiffres on a tenu en compte la situation politique et économique du pays mais reste à prévoir le financement des fonds nécessaires pour l’élimination de ces quantités.

Selon une méthode d’évaluation des risques explicitée dans le chapitre 5, on a pu dégager 42 sites prioritaires dont le désamiantage est urgent. On cite :

<table>
<thead>
<tr>
<th>Site</th>
<th>Bâtiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commissariat Régional de l’Education - Ariana</td>
<td>Dépôt Auto</td>
</tr>
<tr>
<td>Hôpital Abderrahmen Mami - Ariana</td>
<td>Chaufferie</td>
</tr>
<tr>
<td>Hôpital Abderrahmen Mami - Ariana</td>
<td>PAV2</td>
</tr>
<tr>
<td>Hôpital Abderrahmen Mami - Ariana</td>
<td>Mosquée</td>
</tr>
<tr>
<td>Ecole Primaire Saline - Ben Arous</td>
<td>Kheireddine Bacha</td>
</tr>
<tr>
<td>Ecole Primaire Saline - Ben Arous</td>
<td>Bâtiment administratif</td>
</tr>
<tr>
<td>Ecole Primaire Ibn Sina - Ben Arous</td>
<td>Derrière salles de classes 5, 6, 7, 8</td>
</tr>
<tr>
<td>Ecole Primaire Ibn Sina - Ben Arous</td>
<td>En face des salles de classes 5, 6, 7, 8</td>
</tr>
<tr>
<td>Ecole Primaire Ibn Sina - Ben Arous</td>
<td>Derrière bloc sanitaire "toilette"</td>
</tr>
<tr>
<td>Ecole Primaire Khaznadar Ezzahra - Ben Arous</td>
<td>Surface extérieure</td>
</tr>
<tr>
<td>Ecole Primaire Khaznadar Ezzahra - Ben Arous</td>
<td>Surface extérieure</td>
</tr>
</tbody>
</table>
7. L’incidence économique de la substitution des produits amiantés

Comme nous l’avons déjà mentionné pour les organismes gros consommateurs d’amiantes ciment, et compte tenu de l’expérience des principaux opérateurs (SONEDE, ONAS, CRDAs), la longévité des produits en amiantes ciment, en particulier les conduites constituant les infrastructures et les équipements de base du Pays, est de l’ordre de 30 à 50 ans.

- **Pour le cas de la SONEDE**, suite à un entretien avec la direction de distribution et l’exploitation des réseaux, il s’est avéré qu’il existe actuellement des problèmes de financement pour le renouvellement du réseau. En effet, la SONEDE est actuellement au stade de l’évolution vers le PEHD selon sa stratégie de moyen et long terme, soit le remplacement des 25000 km du réseau existant (conduites amiantes ciment) à raison de 2% par an. La mise en œuvre de la stratégie est bloquée à cause des faibles moyens financiers. Dans ce cadre, la SONEDE a écrit au ministère de l’industrie pour demander qu’on autorise à MAWASSIR la production de 100 km de conduite amiantes ciment jusqu’à 2015, le temps qu’elle retrouve les moyens financiers pour passer au PEHD. Cette demande a été refusée et on a exigé l’interdiction de l’utilisation des produits amiantés et les remplacer par le PEHD ou le GRP pipes.

Pour ce cas nous avons essayé de calculer en chiffres la rentabilité du remplacement des conduites AC par des conduites PEHD (durée de vie plus de 100 ans), en utilisant un montage financier adéquat. Après tous calculs faits, la durée de vie des matériaux de remplacement doit être au minimum 60 ans pour dire qu’il est plus rentable que les conduites AC.

Pour le cas des conduites PEHD, la durée de vie dépasse les 100 ans, donc sa rentabilité économique est bien claire, d’où son utilisation est bien justifié.
La SONEDE avoue que le remplacement du réseau est bénéfique que ce soit de point de vue environnemental et économique mais reste dépendante des financements et la situation économique et financière de l’établissement. Des efforts sont actuellement faits pour trouver des sources de financement pour cet aspect.

- **Pour le cas de l’ONAS**, le remplacement des conduites amiante-ciment a été imposé par le non rentabilité de ce type de conduite vu que la durée de vie de la conduite ne dépasse pas les 15 ans à cause de l’effet des émissions H₂S. Depuis des années, l’ONAS commençait le remplacement des conduites amiante ciment par des conduites PEHD et actuellement par le PVR. Vu la rentabilité des produits de remplacement et l’échelonnage de ce remplacement sur plusieurs années, l’impact économique n’est pas ressenti par cet organisme.

- **Pour le cas de la gestion des déchets et des rebuts** qui vont en s’accumulant au long terme que ce soit pour les sites des usines concernés, pour les immeubles bâtis, ou pour les infrastructures et équipements gérés par les partenaires gros consommateurs de produits en amiante ciment, la nécessité de mise en décharge contrôlée de quantités considérables d’amiante ciment, pose un certain nombre de difficultés économiques et financiers.

Enfin il est judicieux d’attirer l’attention sur le fait que l’élimination en décharge contrôlé surtout de conduites en amiante ciment et rebus en provenant, pose le problème non seulement de la quantité à éliminer, mais aussi celui du volume énorme. Il s’agit en effet de conduites vides qu’il est déconseillé de détruire et de terrasser avant enterrément en décharge. Ceci peut déboucher sur un ‘facteur de foisonnement’ énorme, dépassant souvent 100% ; d’où la nécessité d’un espace considérable de décharge tant au plan de l’exécution de l’aménagement, qu’au plan du suivi, entretien et contrôle réguliers. C’est pourquoi, en Europe le choix d’espaces morts souterrains comme les mines abandonnées souterraines a été de choix pour l’élimination non seulement de l’amiante, mais aussi pour bien d’autres déchets dangereux.

8. **Proposition de schémas de gestion des produits et déchets d’amiante**

La meilleure gestion de ces produits et déchets en amiante commence par une action de reconnaissance des lieux et d’identification de l’existant. De l’expérience de cette étude, il n’est pas toujours facile de pouvoir obtenir des informations précises, entre autres, par voie administrative, le tunisien moyen semblant ignorer totalement le danger, et l’amiante en tant que tel qui cohabite avec l’homme de la manière la plus malsaine. Ce serait plutôt un produit tellement usuel qu’il soit pris pour un matériau banal. C’est là où l’action de sensibilisation sur le danger amiante s’impose à l’échelle de tout le pays.

A l’échelle de détenteurs de grandes quantités de produits et déchets en amiante (surtout amiante ciment) l’information est nécessaire pour pouvoir parachever des schémas de gestion adéquats et organisés.

L’approche suivie pour l’élaboration du schéma de gestion consiste en la répartition des sources ou endroits des déchets amiéntés en plusieurs cas :

- **Cas des usines de transformation de l’amiante**

Pour les trois usines de transformation de l’amiante, nous proposons un schéma de désamiantage et de pratique de décharges in situ, à condition que ces décharges soient de forme et de conception non apparente pour éviter les opérations de suivi draconniennes à cause des intempéries et donc du risque de mise à découvert du produit dangereux. La décharge apparente construite sur le site de CIAMIT en 2008 en donne un exemple.

Le principe est de pratiquer une excavation, éventuellement à alvéoles successives, d’enterrer l’amiante et les déchets de sols contaminés, les recouvrir par du sol, les humidifier et les écraiser au rouleau, pour ramener la décharge avec son couvert de sol à même le niveau NGT local. Le recouvrement de la décharge peut se faire par du sol et des implantations de verdures, par une
couch de plâtre (20% ciment) ou par de l’asphalte. Ceci permettra la récupération du terrain de la décharge en question comme espace vert, espace de récréation, parking, et pourquoi pas comme un espace de nouvelle installation industrielle sachant bien que le sous-sol sera déclaré vicier et ne doit donc pas être excavé. Moyennant le respect de règles de construction en génie civil l’action peut bien être réussie.

- **Cas des organismes gros consommateurs des conduites en amiantes-ciment**

Il est aussi impensable de voir ces organismes se mettre demain à déterrer des conduites à produits dangereux encore fonctionnelles. Pour les conduites neuves en stock sur les parcs des districts, deux solutions sont possibles : (1) soit les éliminer en décharge, ce qui représente un manque à gagner et une tâche lourde, (2) continuer à utiliser ces conduites pour l’entretien des réseaux, donc à les enterrer, à conditions de les badigeonner à l’extérieur et à fermer les orifices par du plastique en cours de transport et de mise en place pour manutention. Le choix de l’une ou de l’autre de ces deux solutions relèvera de la tâche des organismes responsables de l’action de désamiantage.

Pour les déchets, il est proposé la création de décharges in situ, non apparentes à l’échelle des districts, des gouvernorats et des délégations. Pour l’action au long terme, il est aussi conseillé de contourner les réseaux dès que possible et de construire de nouvelles lignes de conduites sans amiante.

- **Cas des bâtiments public**

Même dans les pays ayant banni les premiers l’amiante, des quantités énormes demeurent encore sur place dans les bâtiments. L’essentiel est d’identifier ces parties, les isoler, les badigeonner, bref les entenrir tout en sachant leur emplacement pour éviter tout risque.

- **Cas des bâtiments privés**

L’instauration du certificat “bien exempt d’amiante“ à la cessation, vente ou démolition d’un bâtiment, d’un lieu ou d’un bien, permettra d’inciter le privé à la déclaration de ce qu’il détient d’une façon volontaire. L’intervention permettra ensuite soit un enlèvement soit une isolation et un entretien continu de l’amiante laissé sur place pour éviter le risque.

- **Cas des produits importés**

L’action des Services de Douanes et de la DGCCI depuis les années 2000 a permis de réduire considérablement les produits à base d’amiante importés. Néanmoins, des produits à base de chrysotile demeurent tolérés. Ce qui dans le cas d’amiante totalement banni pose un problème. L’ANPE et l’ANGeD doivent disposer des informations très utiles à ce sujet auprès des services indiqués.

9. **Gestion des déchets et leur élimination**

- **Reconnaissance et enlèvement de l’amiante**

La gestion de l’amiante et de ses déchets nécessite d’abord la formation de spécialistes qui peuvent reconnaître ces minéraux, ce qui n’est pas une tâche facile. En effet, les analyses et méthodes physiques de reconnaissance de l’amiante ne sont pas du tout aisés, dépendant de la composition complexe de ces minéraux naturels et de leurs réponses variées tel qu’au microscope.

Pour leur enlèvement, il est aussi nécessaire de former des ouvriers, techniciens et sociétés spécialisées dans l’enlèvement de l’amiante. Compte tenu de l’exiguïté de marché on peut penser à former des équipes chargées de la dépollution tous produits qui peuvent le cas échéant s’occuper de l’amiante. Ces équipes doivent disposer d’un agrément adéquat et travailleront sous le contrôle de spécialistes et des organismes chargés du contrôle de la qualité de l’Environnement (DHMPE, ANPE et ANGeD).
• **Inspection des lieux pour l’identification de l’amiante**

Une inspection de lieux en vue de la reconnaissance de l’amiante doit relever de la tâche de spécialistes en la matière. Ces inspections permettront d’identifier les endroits exacts contenant de l’amiante ainsi que les quantités des déchets qui seront générées.

• **Transport de l’amiante**

L’amiante étant un déchet dangereux, son emballage et son transport pour quelque motif que ce soit, nécessite d’**apposer un sigle l’identifiant sur l’emballage et sur le moyen de transport.** Aussi, un sigle spécifique est proposé.

• **Techniques d’élimination de l’amiante**

Pour la manipulation de l’amiante lors d’enlèvement toutes les précautions et procédures nécessaires sont mentionnées et commentées.

Les techniques d’élimination de l’amiante sont passées en revue. Elles se résument en les méthodes et techniques et les plus simples consistant à mettre en décharge ces déchets dangereux, soit in situ, soit ex situ. Nous recommandons néanmoins, pour les questions pratiques évoquées d’opter vers des décharges non apparentes, qui permettront au mieux de récupérer le terrain de la décharge pour au moins un minimum d’usage, et d’éviter les effets des intempéries et de l’érosion sur la masse de la décharge. La vitrification, technique utilisée en Europe est loin d’être applicable dans le cas de la Tunisie.

Dans ce cadre, les démarches des études nécessaires à l’identification des sites destinés pour décharge de produits dangereux, dans le cadre d’études de faisabilité et d’EIE, sont aussi esquissées dans leurs détails, tout en faisant appel aux meilleures pratiques utilisées de par le Monde.

10. Elaboration d’un plan d’action

• **L’unité de gestion du projet de désamiantage** : celui-ci présidé par un membre relevant du Ministère chargé de l’environnement, comprendra des membres de tous les Ministères concernés, instances nationales, et Organisations Non Gouvernementales actives dans le domaine de l’Environnement.

• **Préparation du cadre institutionnel et réglementaire** : des textes réglementaires sont proposés à ce sujet pour compléter l’arsenal national de lois existantes en la matière.

• **Programme de sensibilisation** : celui-ci doit être conduit par voie de médias, de web, de publicité, de conférences, de workshop, etc., surtout durant les deux premières années de démarrage du Plan d’Action.

• **Programme de formation aux techniques d’identification de l’amiante et les techniques de son enlèvement et son élimination** : ce programme peut être conduit pour les agents de l’ANPE, la DHMPE et de l’ANGeD, pour les bureaux d’études, et pour toute personne désireuse de se spécialiser pour être agréés dans le domaine. Cette formation peut se faire en association entre UGP (Unité de Gestion du Projet de désamiantage) National et Institution d’Education Nationale.
• **Les coûts estimatifs de l’appui au plan d’action**: ces coûts s’élèvent à 450.000 dinars, étant bien entendu que des coûts partiels sont à payer mais qui seront à charge des personnes à former ou des sociétés désireuses à se spécialiser dans le domaine de la dépollution.

• **Échéancier du plan d’action**: cet échéancier s’étend sur une période de 10 an, avec une période de 2 ans de mise en place du Plan d’Action et de ses parties et du démarrage de la formation et de sensibilisation des concernés et du public. L’action de désamiantage sera bien soutenue à partir de la troisième année sachant bien que des organismes gros consommateurs d’amiante ciment continueront à produire des déchets sur une longue période tant que de nouveaux réseaux n’ont pas été financés et mis en place par contournement des réseaux actuels contenant de l’amiante. Mieux les conduites seront délaissées sur place, plus réduite sera la quantité de déchets à entretenir de l’étude jusqu’au lieu définitif de mise en décharge.

11. **Plan d’action pour la gestion des déchets d’amiante**

L’examen de l’expérience étrangère en matière d’interdiction de l’amiante montre que malgré les efforts déployés pour l’élimination de l’amiante, des millions de tonnes demeurent sur place mais sont régulièrement entretenus. L’amiante enlevé est éliminé dans des décharges contrôlées de déchets dangereux.

L’estimation des quantités de déchets d’amiante à éliminer dans les bâtiments publics sur la base des données de la première phase, montre qu’environ 5637 tonnes de déchets d’amiante seront générés sur les 10 années à venir. Il est aussi suggéré que les conduites en amianté ciment déposées sur les parcs des organismes gros consommateurs d’amiante ciment (soit 45 090 tonnes) puissent continuer à être utilisées à condition de les badigeonner au préalable et à observer les règles de sécurité nécessaires pour leur manutention. Il est également suggéré de laisser systématiquement les conduites avariées sur place lors de la manutention des réseaux pour éviter toute génération de déchets. Pour la fraction « débris en amianté ciment » un enfouissement in situ dans chaque parc pourra être envisagé, surtout que les quantités sont minimes.

La quantité de 5637 tonnes est assez réduite et ne permet pas de multiplier les filières spécialisées dans l’enlèvement et l’élimination de l’amiante. Cette quantité justifie la création d’une seule décharge qui peut être choisi dans le centre du Pays et qui puisse être utilisée pour l’élimination des déchets transportés jusqu’à ce site définitif de stockage de déchets.

L’évaluation des coûts de mise en décharge de 7637 tonnes de déchets d’amiante, quantité maximale disponible dans les bâtiments publics et privés, repose sur le principe ‘pollueur-payeur’. Cette quantité pouvant être résorbée en l’espace d’une dizaine d’années à un rythme de 800 tonnes par an.
Localisation du produit

<table>
<thead>
<tr>
<th>Localisation du produit</th>
<th>Quantité de déchets actuellement sur le territoire (déchets + stock) Tonnes</th>
<th>Déchets à Court Terme en Tonnes (durant 10 prochaines années) Tonnes</th>
<th>Déchets à Moyen et Long Termes en Tonnes (de 10 à 50 ans) s’il n’y aura pas d’action d’élimination et/remplacements</th>
<th>Déchets à Moyen et Long Termes en Tonnes juste après 10 ans d’élimination de tous les déchets jusqu’à 50 ans s’il y aura élimination de tous les déchets existants durant les 10 ans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bâtiments inventoriés (tôle conduites EP)</td>
<td>5637</td>
<td>5 637</td>
<td>5637</td>
<td>0</td>
</tr>
<tr>
<td>Bâtiments privés (tôle conduit EP)</td>
<td>2000</td>
<td>2000</td>
<td>2000</td>
<td>0</td>
</tr>
<tr>
<td>Déchets au niveau des 3 usines</td>
<td>650</td>
<td>650</td>
<td>650</td>
<td>0</td>
</tr>
<tr>
<td>Stock des Organismes (ONAS, SONEDE et CRDA)</td>
<td>8090</td>
<td>45 090</td>
<td>3565784</td>
<td>3 520 694</td>
</tr>
<tr>
<td>TOTAL DE DECHETS</td>
<td>16377</td>
<td>53377</td>
<td>3574071</td>
<td>3 520 694</td>
</tr>
</tbody>
</table>

Les coûts globaux de désamiantage pour toute la Tunisie, y compris les usines de transformation de l’amiante (CIAMIT, El Mawassir et SICOAC) qui doivent pratiquer à leur charge, des décharges in-situ pour éliminer leurs propres déchets à des fins de reconversion définitive à une production sans amianté, s’élèvent à environ **10 000 000 dinars sur les 10 années à venir**.

Quantités déchets actuelles (tonnes) - Coûts de gestion (DT)

<table>
<thead>
<tr>
<th>Organismes gros consommateurs</th>
<th>Quantités déchets actuelles (tonnes)</th>
<th>Coût de gestion (DT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SONEDE</td>
<td>8 090</td>
<td>440 300</td>
</tr>
<tr>
<td>ONAS</td>
<td>890</td>
<td>62 300</td>
</tr>
<tr>
<td>CRDA</td>
<td>5 200</td>
<td>14 000</td>
</tr>
<tr>
<td>Bâtiments publics</td>
<td>5 637</td>
<td>3 945 900</td>
</tr>
<tr>
<td>Ministère de l’Éducation et de l’Enseignement</td>
<td>523</td>
<td>209 039</td>
</tr>
<tr>
<td>Ministère de l’Agriculture</td>
<td>1 982</td>
<td>792 840</td>
</tr>
<tr>
<td>Ministère de l’Equipement et de l’Environnement</td>
<td>19</td>
<td>7 460</td>
</tr>
<tr>
<td>Ministère de transport</td>
<td>527</td>
<td>210 700</td>
</tr>
<tr>
<td>Ministère de l’Intérieur et de Développement locale</td>
<td>1 897</td>
<td>758 960</td>
</tr>
<tr>
<td>Ministère de la santé publique</td>
<td>689</td>
<td>275 500</td>
</tr>
<tr>
<td>Bâtiments privés</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>Usines de transformation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAWASSIR</td>
<td>650</td>
<td>2 659 000</td>
</tr>
<tr>
<td>CIAMIT</td>
<td>250</td>
<td>929 000</td>
</tr>
<tr>
<td>SICOAC</td>
<td>200</td>
<td>1 730 000</td>
</tr>
<tr>
<td>Centre d’Enfouissement Technique</td>
<td>1 550 000</td>
<td></td>
</tr>
<tr>
<td>Mesures d’accompagnement</td>
<td>450 000</td>
<td></td>
</tr>
<tr>
<td>Dépenses sur la sensibilisation, formation et analyses</td>
<td>550 000</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16377</td>
<td>9 595 200</td>
</tr>
</tbody>
</table>
12. **Proposition d’un texte réglementaire**

Le cadre réglementaire proposé prend en considération les lois et textes réglementaires existants et propose des textes réglementaires complémentaires. L’étude est conduite dans le sens de réduire au maximum le nombre de textes à mettre en place pour éviter les doubles emplois. Par exemple, pour la formation ou même pour les procédures de travail de l’entreprise, des textes réglementaires existent et demeurent applicables en la matière.

Quatre textes de décrets déjà abordés dans l’étude 2008, sont améliorés et proposés en un seul décret. Ce texte concerne les titres suivants et dont les énoncés sont fournis en annexes:

- Interdiction de l’amiante en Tunisie,
- Exposition à l’amiante dans les immeubles en Tunisie,
- Travaux d’enlèvement de l’amiante et la gestion des produits et déchets en contenant,
- Travaux de gestion et de remise en état des sites pollués par l’amiante.
1 Introduction

La présente étude est consacrée à l’évaluation des différentes catégories d’amiantes, leurs usages à l’échelle de la Tunisie et la gestion de leurs déchets. L’objectif premier est de se prémunir contre les impacts de ces produits sur l’environnement et sur la Santé Publique en procédant d’abord à un inventaire exhaustif des matériaux à base d’amiantes, leurs usages, leurs distributions sectorielles (industries, bâtiments, canalisations diverses, produits de calorifugeages,...) et leur devenir sur tout lorsqu’il s’agit de leurs déchets spécifiquement dangereux et qui nécessitent des soins particuliers pour leur enlèvement et leur gestion la plus adéquate pour les mettre hors de nuance.

Il importe de souligner que le qualificatif amiante (asbestos en anglais = nom commercial) désigne plusieurs produits silicates, minéraux naturels issus entre-autres de l’altération hydrothermale de roches magmatiques, dont les différents types englobent :

- **les amiantes dures** qui sont à base de minéraux silicates hydratés de la famille des hornblendes : dont la hornblende elle-même, la grunérite (amosite), l’antophyllite, la trémolite, la crocidolite et l’actinolite. C’est la variété d’amiantes les plus dangereuses. Par vieillissement et altération, par friction et par désagrégation mécanique fine, ces minéraux partent en fibres micrométriques et se soulevant totalement dans l’air. Dès lors les nuées de microfibrilles lorsqu’elles sont inhalées, s’incrustent dans les conduits pulmonaires et dans les tissus de la plèvre, peuvent former des centres d’irritation continue et débouchent ainsi sur des pneumonies et des cancers (cancers de la plèvre, mésothéliomes, ...).

- **les amiantes dites souples** surtout parce qu’elles se prêtent à la filature utile pour certains usages (corderies réfractaires, textiles de protection thermique, gants et tabliers d’isolation thermique, courroies de transmission mécanique...), relèvent du groupe de la serpentine (voisin magnésien des kaolins ordinaires). A ce groupe appartient la serpentine qui sert pour la fabrication des garnitures de freins, pour la production de friction mécanique en général, pour l’isolation..., mais surtout le chrysotile formé de fibres spectaculairement longues et dont la souplesse mécanique est fort trompeuse, hautement adaptées à la filature. C’est d’ailleurs pour cet aspect hautement fibreux utilisé comme preuve contre la formation de microfibrilles, et par suite le caractère de produit inoffensif du chrysotile, donc différent de celui des amiantes dures beaucoup plus néfastes pour l’environnement et pour la santé. Ceci a d’ailleurs encouragé la thèse de la possibilité d’utilisation de l’amiant sans risque (du moins, dans le cas du seul chrysotile). C’est pourquoi d’ailleurs le législateur Tunisien qui reconnaît l’amiant comme produit et déchets dangereux, avait interdit l’importation, la fabrication et la mise sur le marché de produits à base d’amphibole, mais il demeure à tolérer l’usage du chrysotile durant la période la plus récente.

1.1 Cadre de l’étude

L’étude s’inscrit dans le cadre de tous les programmes d’étude et d’investigations qui visent la protection de l’environnement et de la santé publique. Elle agit de concert avec les efforts notamment des Pays européens riverains de la Méditerranée, en partant de l’examen de la situation actuelle quant à l’usage de quantités d’amiantes et l’éparpillement de leurs résidus, pour mieux asseoir les méthodes et techniques de leurs récupérations, leur élimination, mais aussi pour instaurer les meilleures prérogatives et mesures à prendre en vue du renforcement de la législation et des normes environnementales en matière d’amiant.

1.2 Organigramme d’étude

Le projet s’organise en deux phases dont les tâches sont bien précises :

- **Phase 1.** « Inventaire des produits et déchets amiantés et étude des différents usages de l’amiant en Tunisie » visant particulièrement un inventaire des produits et déchets amiantés et leurs usages sectoriels, notamment les conduites en amiant ciment (réseau d’adduction et distribution d’eau, canalisations de drainage et d’évacuation d’eau,...), les bâtiments amiantés (calorifugeages,
floconnages, isolation thermique, faux-plafonds, toitures en tôles ondulées en amiante ciment,...), et autres produits (garnitures de freins, courroies de transmission à filatures en amiante chrysotile,...). Les tâches qui ont fixées pour étude sont les suivantes.

2. Fiches d’information sectorielles et campagnes de mesures sur terrain.
3. Elaboration d’une base de données pour le suivi des produits et sites contenant de l’amiante.
4. Une étude des usages de l’amiante et déchets générés

Phase 2. « Elaboration des schémas de gestion des déchets d’amiante et proposition d’un plan d’action global de gestion des déchets amiantés » qui tient compte des résultats et des propositions de l’étude en 2008 conduite par le Ministère de l’Environnement du Développement Durable “

ÉTUDE DE GESTION ET DE REMISE EN ETAT DES SITES CONTAMINES PAR LES DECHETS D’AMIANTE ET RENFORCEMENT DE L’ASPECT LEGISLATIF ET NORMATIF EN LA MATIERE”, traitant de trois sites industriels amiantés (SCOAC, CIAMIT et EL MAWASSIR). Les tâches fixées pour cette phase englobent les éléments suivants :

5. Elaboration de schémas de gestion des déchets d’amiante existants.
6. Elaboration des schémas de gestion des déchets d’amiante générés dans le futur.
7. Elaboration d’un plan global de gestion des produits et déchets amiantés.
8. Cadre réglementaire et normatif pour la gestion de l’amiante.
10. Production du guide méthodologique
11. Organisation d’un séminaire de restitution.

1.3 Objectifs de l’étude

Compte tenu du fait qu’au cours du 20ème siècle, l’amiante avait été largement utilisé dans plusieurs secteurs (Industrie, transport automobile, construction navale, BTP, assainissement, agriculture, lutte sous forme de murailles (haies à tôles en amiante ciment) contre l’ensablement et la désertification,…, plusieurs objectifs sont visés par l’étude :

En premier lieu, l’objectif général et de proposer un plan adéquat et opérationnel de gestion des produits à base d’amiante et de leurs déchets, selon leurs usages sectoriels en vue de protéger l’environnement et la santé publique de la manière la plus efficace.

En second lieu, une suite d’objectifs plus spécifiques, est invoquée :

Au plan technique, il est proposé (1) d’étudier les différents usages de l’amiante en Tunisie, (2) de décrire le schéma global de gestion actuelle et future des déchets non industriels d’amiante, (3) d’élaborer des schémas de gestion des déchets d’amiante, (4) de construire une base de données pour le suivi au moyen et long termes des ouvrages et des produits à base d’amiante, et des sites contaminés par l’amiante sur le territoire,

Au plan juridique et institutionnel, analyser les textes de loi existants et proposer les adaptations nécessaires aux décrets d’applications proposés dans l’étude de 2008, en fonction des nouveaux résultats des enquêtes réalisées dans le cadre de la présente étude.

Au plan de l’action (1) proposer un plan d’action global opérationnel pour la gestion des déchets d’amiante et (2) élaborer un guide méthodologique pour la gestion de ces déchets.

L’objectif ultime de l’étude est ainsi de renforcer les mesures préventives quant à la protection de l’environnement et de la santé publique contre l’amiante, de recenser les sites à produits et déchets d’amiante à l’échelle du Pays, et de renforcer la démarche qui associe à la protection environnementale, une réglementation législative performante pour la préservation de notre espace de vie, et une protection adéquate de notre santé.
1.4 Organismes et pays de référence

Dans ce type d’étude, il est d’usage et fortement utile de s’inspirer des expériences de Pays étrangers, notamment ceux riverains de la Méditerranée, qui ont déjà abordé les problèmes des impactas environnementaux de l’amiante, tant au plan des programmes opérationnels, établis pour la lutte contre ce fléau environnemental, qu’au plan institutionnel et juridique visant l’éradication de l’usage de l’amiante, les opérations de désamiantage et le suivi des produits et déchets d’amiantes et leurs interactions avec l’environnement et la santé.

A ce titre, Nous avons tenu compte des directives européennes ; ceci se justifie par le fait du rapprochement décidé de la législation tunisienne vers la législation européenne.

En second lieu, nous nous sommes inspirés des textes et mesures adoptés par la France, un pays qui a un grand vécu en matière d’utilisation de l’amiante, et par la Belgique et le Luxembourg, de petits pays comme la Tunisie.

Enfin, nous nous sommes inspirés des textes, recommandations, valeurs guides d’organisations internationales telles l’OMS et l’OIT.
2 Usages de l’amianté, conséquences et raisons de son éradication

2.1 Epidémiologie et conséquences de l’exposition à l’amianté

L'utilisation de l'amianté est l'une des questions les plus controversées entourant l'industrie des minéraux industriels. Son caractère cancérigène prouvé, un manque général de connaissance des niveaux d'exposition minimale de sécurité, son utilisation généralisée depuis plus de 100 ans, et la longue période de latence pour le développement du cancer du poumon et de mésothéliome, sont les principaux facteurs contribuant à ces controverses. Un autre facteur est que, malgré des décennies de recherches, les mécanismes responsables de ses propriétés cancérigènes sont encore largement mal connus.

Les États-Unis ont produit environ 3,29 millions de tonnes (Mt) d'amianté et utilisé environ 31,5 Mt entre 1900 et 2003. En 2002, la dernière mine d'amianté aux États-Unis a fermé, marquant la fin de plus de 110 ans de production d'amianté aux États-Unis. La production mondiale cumulée de 1900 à 2003 était d'environ 181 Mt. Si l'on suppose que la consommation mondiale à peu près égale à la quantité en production, on retrouve qu’environ la moitié de la production mondiale et la consommation correspondante ont eu lieu entre la fin de 1976 et la fin de 2003, ce qui correspond à peu près au pic du risque manifeste, et à la période d’une prise de conscience générale pour bannir l’usage de ce produit.

L’amianté est un produit naturel abondant, fibreux, constitué de minéraux flexibles, réfractaires et résistant à la corrosion. Le produit a été fortement exploité et commercialisé pour des applications diverses (industries, BTP, calorifugeages, isolation,...). Comme avancé, il s’agit d’un groupe de minéraux relevant des silicates naturels dont les représentants les plus communs et les plus abondants sont la crocidolite (amiante bleue), l’amosite (amiante brune) et le chrysotile (amiante blanche). Pour son aspect fibreux développé et l’aisance de sa filature, ce dernier représente au moins 90% des quantités d’amianté utilisée de par le Monde.

Il semble que les dangers de l’amianté ont été reconnus tôt, suite à des morts suspectes d’ouvriers travaillant dans le domaine de l’exploitation et de l’usage de ce produit. Au 20ème siècle, les morts provoquées ont été reconnues dès les années 1920s, mais ce n’est cependant qu’au début des années 1960s, grâce à des études de cas sur des ouvriers en Afrique du Sud, que le lien direct entre amianté et mésothéliomes, a clairement été prouvé. Aux années 1980s en France, en Allemagne, aux Pays Bas,…, ce type de maladie mortelle est définitivement reconnu comme signature de l’exposition à l’amianté.

Aux États Unis, on estime l’apparition d’environ 2000 cas de mésothéliomes males par an et 2000 à 3000 d’autres types de tumeurs associées à l’amianté qui ont été rapportés dans les journaux
traitant d’épidémiologie. Néanmoins, l’utilisation de l’amiante demeure toujours légale aux USA, malgré un contrôle renforcé et relativement strict.

L’utilisation de l’amiante demeure aussi courante dans plusieurs pays sous-développés, en cours de développement ou même émergents, pour des raisons surtout d’usage dans le domaine industriel. La tendance a été même à l’évolution de ces pays comme un dépotoir de l’amiante et de ses déchets, surtout dans les pays où ce type d’usage n’est pas contrôlé ou interdit. Aussi malheureusement, il n’existe dans ces pays que peu d’études épidémiologiques sur les maladies provoquées par l’amiante. C’est par exemple le cas en Tunisie.

<table>
<thead>
<tr>
<th>PAYS</th>
<th>CANCER DE POUMONS</th>
<th>MÉSOPTHÉLIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Royaume Uni</td>
<td>2 700</td>
<td>1 700</td>
</tr>
<tr>
<td>USA</td>
<td>13 100</td>
<td>8 100</td>
</tr>
<tr>
<td>Russie</td>
<td>6 400</td>
<td>4 000</td>
</tr>
<tr>
<td>Belgique</td>
<td>420</td>
<td>260</td>
</tr>
<tr>
<td>Allemagne</td>
<td>3 600</td>
<td>2 250</td>
</tr>
<tr>
<td>Suisse</td>
<td>380</td>
<td>240</td>
</tr>
<tr>
<td>Norvège</td>
<td>225</td>
<td>140</td>
</tr>
<tr>
<td>Pologne</td>
<td>1 600</td>
<td>1 000</td>
</tr>
<tr>
<td>Estonie</td>
<td>60</td>
<td>40</td>
</tr>
</tbody>
</table>

Ratio Cancer de Poumon/Mésothéliome

Finlande 4 à 5 / 1 (estimé)
Royaume Uni (Journal of Cancer, 1999) 1,6 / 1 (évalué)

2.2 Eradication de l’amiante

- Pays n’ayant pas ratifié la Convention LIT, mais sont couvert par la décision de la CEE de bannir l’usage de l’amiante : Danemark, France, Grèce, Irlande, Italie, Luxembourg, Grande Bretagne.

- Les Pays qui n’ont pas encore ni ratifié la Convention, ni banni l’usage de l’amiante, mais qui sont attendus à prendre décision, sont : Estonie, Lettonie, Lituanie, République Tchèque, Slovaquie, Bulgarie, Roumanie, Turquie, Islande.
2.3 Produits de substitution de l’amiante

Tableau 2.1. Produits de substitution de l’amiante selon ses usages, utilisés dans le domaine industriels

<table>
<thead>
<tr>
<th>PRODUIT À BASE D’AMIANTE</th>
<th>PRODUIT DE SUBSTITUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amiante-ciment pour tôles ondulées</td>
<td>Ciment fibreux utilisé pour toitures à base fibres synthétiques (alcool polyvinyle, polypropylène) et fibres végétales/cellulose (pâte kraft de résineux, bambou, coco, tiges de tabac, etc.), avec en option des fumées de silice, des cendres volantes,...</td>
</tr>
<tr>
<td></td>
<td>Tuiles en microciment</td>
</tr>
<tr>
<td></td>
<td>Tôles galvanisées</td>
</tr>
<tr>
<td></td>
<td>Briques en argile</td>
</tr>
<tr>
<td></td>
<td>Fibres végétales dans l’asphalte</td>
</tr>
<tr>
<td></td>
<td>Tuiles métalliques revêtues</td>
</tr>
<tr>
<td></td>
<td>Tuiles en aluminium</td>
</tr>
<tr>
<td></td>
<td>Feuilles de toiture en PVC extrudé</td>
</tr>
<tr>
<td></td>
<td>Polyéthylène recyclé polypropylène haute densité et pierres concassées</td>
</tr>
<tr>
<td></td>
<td>Aluminium recouvert de plastique</td>
</tr>
<tr>
<td></td>
<td>Acier galvanisé et plastifié.</td>
</tr>
<tr>
<td>Plaques en amiante ciment (plafonds, façades, cloisons)</td>
<td>Ciment fibreux à base de fibres de cellulose à partir de légumes / fibres de cellulose (voir ci-dessus), de papier, de fibres synthétiques</td>
</tr>
<tr>
<td></td>
<td>Panneaux de plafond en gypse</td>
</tr>
<tr>
<td></td>
<td>Plafonds, corniches et cloisons en polystyrène, Murs de façade à structure en polystyrène avec enduit de plâtre</td>
</tr>
<tr>
<td></td>
<td>Revêtement en aluminium</td>
</tr>
<tr>
<td></td>
<td>Brique</td>
</tr>
<tr>
<td></td>
<td>Revêtement par des planches</td>
</tr>
<tr>
<td></td>
<td>Charpente galvanisée avec plaque de plâtre ou de silicate de calcium</td>
</tr>
<tr>
<td></td>
<td>Charpente en bois tendre à revêtement de plaques de plâtre ou en silicate de calcium.</td>
</tr>
<tr>
<td>Conduites en amiante-ciment</td>
<td>Haute pression :</td>
</tr>
<tr>
<td></td>
<td>Fonte et tuyaux en fonte ductile</td>
</tr>
<tr>
<td></td>
<td>Tuyaux en polyéthylène haute densité</td>
</tr>
<tr>
<td></td>
<td>Tuyaux en chlorure de polyvinyle</td>
</tr>
<tr>
<td></td>
<td>tuyaux en béton renforcé par l’acier (grandes tailles)</td>
</tr>
<tr>
<td></td>
<td>Tuyau en polyester renforcé de verre</td>
</tr>
<tr>
<td></td>
<td>Basse pression :</td>
</tr>
<tr>
<td></td>
<td>Conduite en-ciment de cellulose</td>
</tr>
<tr>
<td></td>
<td>Tuyaux ciment à fibres de cellulose ou PVC</td>
</tr>
</tbody>
</table>
2.4 L’amiante en Tunisie

2.4.1 Historique et situation de l’usage de l’amiante en Tunisie

2.4.2 Amiante et produits à base d'amiante importés, données douanières

En plus de l’amiante en poudre ou en flocons, la Tunisie importe aussi plusieurs produits à base d’amiante, en particulier de produits en amiante ciment et des garnitures de friction pour machineries et véhicules de transport. La nomenclature douanière pour l’amiante et articles importés contenant au moins en partie de l’amiante, est la suivante (étude 2008) :

Tableau 2-2. Nomenclature douanière des produits et articles contenant de l’amiante, importés en Tunisie

<table>
<thead>
<tr>
<th>Code NSH</th>
<th>Produit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2524</td>
<td>Amiante en fibres, en flocons, en poudre et autre amiante</td>
</tr>
<tr>
<td>6811</td>
<td>Ouvrages en amiante ciment, cellulose-ciment ou similaires</td>
</tr>
<tr>
<td>6812</td>
<td>Amiante travaillée en fibres</td>
</tr>
<tr>
<td>6813</td>
<td>Garnitures de friction (plaques, rouleaux, bandes, segments disques, rondelles, plaquettes), non montées, pour freins, pour embrayages ou pour tous organes de frottement, à base d’amiante, ou d’autres substances minérales</td>
</tr>
</tbody>
</table>

Il faut remarquer aussi dès ce moment que dans ce tableau, la nomenclature pose un problème. Il faut bien noter que les vocables ‘autre amiante’ NSH2524’, ‘cellulose-ciment ou similaires’ NSH6811’, ‘à base d’amiante, ou d’autres produits similaires’ NSH13, indiquent bien le fait que beaucoup de parmi les produits importés ou exportés sous cette nomenclature, contiennent des substituts de l’amiante entre autres la cellulose. Aussi, les qualités rapportées dans l’étude de 2008 (voir tableau suivant), ne sont pas obligatoirement dans leur totalité composés d’amiante, et qu’une partie respectable de ces quantités rentre dans la catégorie de produits qui en sont exempts.

Il ressort ainsi de l’analyse des données recueillies (Annexe 2 et Etude 2008) que pour beaucoup de produits et articles importés, l’amiante a pratiquement été abandonné et remplacé par des fibres cellulosiques, du métal, des élastomères, du PVC et PE, et autres produits de substitution, mais aussi par de la serpentine notamment dans les garnitures de friction. Ceci s’explique par le fait que dès que les pays fournisseurs de ces produits auraient eu toute la chance d’avoir banni l’usage de l’amiante, les produits industrialisés et mis sur le marché devraient en être pratiquement exempts surtout à partir de l’année 2005 (Europe).

De même, les données de l’annexe 2 permettent de reconnaître que selon la nomenclature NSh des articles contrôlés en Douane, pratiquement seules les quantités figurant dans le tableau précédent contiennent clairement de l’amiante (entre autre du crocidolite). Par exemple, pour la désignation de plusieurs articles, il est loin d’être clair si l’usage du terme « autre amiante » signifie que le produit contient effectivement de l’amiante, ou plutôt que celui-ci a été remplacé dans le produit importé, par un matériau substitut dont le comportement est similaire, et remplace l’amiante.

2.4.3 Les sites pollués des usines de transformation de l’amiante

Les quantités d’amiante importées par les trois usines SICOAC, CIAMIT et EL Mawassir, ont été évaluée par l’étude 2008, comme suit :
• SICOAC, active de 1962 à 1997, a importé une quantité totale de l’ordre de 59500 tonnes d’amiante durant cette période de 35 ans (1700 tonnes par an en moyenne), et a produit près de 0,6 million de tonnes d’amiante ciment (17000 tonnes AC/an) ;
• CIAMIT, active de 1980 à 2002, a importé une quantité totale de l’ordre de 26400 tonnes d’amiante, et a produit près de 0,26 million de tonnes d’amiante ciment (1200 tonnes AC/an) ;
• El Mawassir, active de 1984 à 2012, a importé près de 35000 tonnes d’amiante, et a produit une quantité en amiante ciment au moins du même ordre de grandeur de celle de CIAMIT (0,26 million de tonnes).

Il en résulte que la quantité totale d’amiante importée en Tunisie par ces trois usines, depuis 1962, est de l’ordre de 121 000 tonnes, alors que la production en amiante ciment peut s’élèver à 1,12 million de tonnes en AC. Les quantités exportées par le pays en cours de développement étant pratiquement négligeables, l’on pourrait affirmer qu’il s’agit là de la quantité moyenne de produits et déchets amiantés, laissée pour les générations futures, dépendant de la longévité du matériel en AC.

La conséquence environnementale et sanitaire de cette période d’usage industriel et technique d’un produit aussi dangereux que l’amiante, en Tunisie (et à une échelle mondiale), est double. Effet :

• si la quantité de 1,12 millions de tonnes de produits en amiante ciment, a été distribuée dans tout le pays, tous secteurs confondus, elle appelle aujourd’hui identification, localisation, contrôle, entretien et tout au moins partiellement élimination ;
• une partie non négligeable de cette amianté, véritable danger permanent, demeure sur chacun des sites même de ces usines, sous forme de déchets d’amiante ciment, de poussières de sols, de crasses diverses sur les murs ou sur les machineries, et qui nécessite donc des opérations profondes de décontamination ;
• un effort louable a été fourni pour la décontamination des sites de SICOAC et de CIAMIT, et pour la mise en décharge contrôlée des déchets d’amiante sur le terrain de chaque site. Une proposition similaire a aussi été faite (étude 2008) pour le cas précis d’El Mawassir. Nul ne peut cependant ignorer les difficultés de gestion et d’entretien de ces décharges de produits dangereux, surtout lorsqu’elles viendraient à se multiplier, sans oublier que l’amiante n’est pas le seul produit dangereux qui appelle à être mis en décharge !, presque partout dans le Pays.

En définitive, les efforts de sensibilisation conduits par les Ministères (en particulier MEDD, par les programmes de fermeture ou de reconversion des Usines) et Instances concernées (Douane, DGCCI (Direction Générale du Commerce et de la Concurrence Industrielle), Organismes de Contrôle), ont bien porté leurs fruits par une réduction presque totale de l’usage en Tunisie, de l’amiante et des produits contenant de l’amiante.

2.4.4 Les infrastructures et organismes gros consommateurs de l’amiante

Fatalement, l’amiante a réussi pour six décennies successives, son intrusion et son éparpillement dans tous les secteurs d’équipement et d’infrastructures :

• non seulement sous forme de tôle et plaques en AC de hangars, d’étables, de cloisons, de toitures de maisonnettes ou d’abris de voitures, de faux plafonds,..., dont il est réellement difficile de cerner les quantités et les mètres à l’échelle du Pays et par secteur ;
• mais surtout sous-forme de tuyauteries de divers calibres : dans le BTP (collecteurs d’eau pluviales, revêtements de colonnes en béton, conduites d’assainissement, desserte d’AEP, conduites de drainage ou d’irrigation dans le domaine agricole, etc. ;

A ce titre, la SONEDE, l’ONAS et le Ministère chargé de l’Agriculture et des Ressources hydrauliques (DGBTH, DGGR, CRDAs, Direction Générale des Sols), ont pour toujours été les gros consommateurs de produits en amiantes ciment (tôles et tuyauteries), et surtout de la manière la plus seraine, jusqu’à
l’éveil de 2000-2005, lorsqu’on s’est rendu compte que nous sommes et notre génération future, pertinemment en face d’un danger véritable : l’amiante.

2.4.4.1 La SONEDE

Les infrastructures et déchets de récupération de conduites en AC de la SONEDE sont considérables (étude 2008) et sont distribués dans tous les gouvernorats :
- Au total la SONEDE dispose de : 44000 km de conduites (AC et PVC) englobant 36000 km de réseau de distribution et 8000 km de réseau de production ;
- 25000 km (diamètres : 80 et 400) comme réseau de distribution (soit 57% du total) sont en amiante ciment ;
- 8855 ml (9km) de déchets de conduites sont dégagés annuellement en cours de manutention, d’entretien et de réfécetion, ce sont là des déchets déterrés et dangereux ;
- Chaque année, environ 200 km de conduites en AC sont remplacés par des conduites en Polyéthylène (bargataire) ; ce sont donc 200km de conduites partant comme déchets dangereux ;
- Il reste encore (étude 2008) 8800ml de conduites usagées qui sont stockées dans les parcs des différents districts. C’est là une situation difficile.

2.4.4.2 Le Ministère Chargé de l’Agriculture et des Ressources hydrauliques

Durant notre enquête on essayé de compléter les données de l’inventaire réalisé en 2008 qui manquait la quantité des conduites amianté ciment dans 7 CRDA (Ben Arous, Tataouine, Sfax, Jendouba, Siliana, Gabes et Mahdia).

L’étude de 2008 résume les informations données par les CRDAs régionales qui sont comme suit !
- Pour les 24 gouvernorats, le linéaire de conduites atteint 8 284 km (eau potable DGGR et réseau d’irrigation). Les quantités stockées sont de l’ordre de 52 km (diamètres 80 à 600), alors que les déchets produits sont de l’ordre de 12 km/an ;
- Une information pertinente mentionnée dans l’étude de 2008, d’après l’expérience des responsables de certains CRDAs, est que l’âge (longévité de l’amiante ciment) des conduites pourrait atteindre 30 à 45ans ; en effet, la longévité du béton est connue pour être de l’ordre de 100ans, avec un début d’apparition de maladies (alcaliréactivité, efflorescences de gypse, félures,…) après les cinq premières décennies. Le barrage de Béni Mtir en béton, commence déjà à manifester ce genre de maladies.

2.4.4.3 L’ONAS

Les linéaires de conduites en amianté ciment de l’ONAS cités dans l’étude 2008 sont comme suit :
- Conduites en stock dans différents districts : 20141 ml (au 31/12/2007),
- Sur un réseau total de l’assainissement dans le Pays, de 13468,31 km, 2373,84 km (18%) sont en amianté ciment.

2.4.4.4 Récapitulation

Les linéaires de conduites installées par les organismes gros cosommateurs de conduites en AC comme rapporté dans l’étude 2008 et en ajoutant les 7 CRDA inventoriés dans cette étude, peuvent être résumées comme suit :
Tableau 2-3. Linéaires de conduites en amiante ciment des infrastructures et équipement nationaux. Source : SONEDE, ONAS et CRDAs.

<table>
<thead>
<tr>
<th>Organisme</th>
<th>Linéaire installé</th>
<th>Quantité en stock</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>km</td>
<td>pourcent</td>
</tr>
<tr>
<td>SONEDE</td>
<td>25 000</td>
<td>72,5</td>
</tr>
<tr>
<td>CRDSs</td>
<td>8 284</td>
<td>26,5</td>
</tr>
<tr>
<td>ONAS</td>
<td>2 374</td>
<td>6,9</td>
</tr>
<tr>
<td>TOTAL</td>
<td>35 658</td>
<td></td>
</tr>
</tbody>
</table>

Il ressort de ce tableau que si la SONEDE dispose du linéaire le plus important de conduites, les CRDAs et l’ONAS disposent des quantités en stock de loin les plus importantes. Il est vrai que pour ces trois organismes, la maintenance et l’entretien des réseaux existants en amiante ciment est une tâche trop préoccupante et difficile.

Parmi les autres utilisateurs des conduites amianté-ciment, on cite les communes (réseau de drainage des eaux pluviales) et quelques composantes des barrages, avec une quantité relativement minime par rapport les organismes cités ci-dessus. En effet, la quantité inventoriée dans le cadre de notre étude est d’environ 516 km.

2.4.5 Autres secteurs, autres lieux et autres produits

Une remarque s’impose pour d’autres secteurs, d’autres lieux et pour l’usage de la laine de verre :

- Pour le parc d’engins mobiles, des quantités considérables de pièces de friction (plaquettes de freins, disques d’embrayages) contenant des quantités de 10 à 15% d’amiantes ont été importées du moins entre 1960 et 2000, jusqu’à ce que ce type de produits soit banni (2000-2005) et donc la substitution de l’amiante par d’autres produits non dangereux. L’usure des articles destinés à la friction, a surement livré l’amiante sur les parcours, avec des concentrations supplémentaires de pièces usagers dans les magasins de stockage, ateliers de réparation, lieux de casses,...; les quantités et l’état des lieux en termes de degré de pollution par l’amiante sont cependant difficiles à cerner.
- Pour l’économie d’énergie et l’isolation, l’amiante a longtemps été utilisé pour l’isolation des conduites de chauffage (exemple : Campus Universitaire), ou comme un isolant dans le domaine de la frigorification, pour les fours,...
- Enfin, il faut bien noter que la laine de silice a bien été utilisée comme l’amiante, notamment dans le BTP et dans le domaine du chaud froid. Ainsi, les murs du bâtiment de notre banque centrale sont constitués de laine de verre en sandwich entre deux plaques de fort-mica, et les faux-plafonds de l'Hôpital Sahoul à Sousse comme ceux de beaucoup d'autres bâtiments dans le Pays, sont en laine de verre. Or celle-ci ressemble dans son comportement à l’amiante et est en plus un agent fort de silicose !, lorsqu’elle est dégradée.
3 Inventaire exhaustif des produits et déchets contenant de l’amiante

L’étude de 2008 a permis de rendre compte du danger des usages des produits à base d’amiante dans différents secteurs d’infrastructures, et de la vie économique en général depuis l’indépendance, et des conséquences hautement dangereuses des déchets amiantés générés. En s’appuyant sur (1) la réalité des conséquences épidémiologiques de ces produits et de leurs déchets, et sur la volonté claire des décideurs de par le Monde d’éradiquer tous usages de toutes les catégories d’amiantes, y compris le chrysotile, et (2) sur l’expérience de Pays notamment européens, l’étude de 2008 a permis de proposer les démarches nécessaires pour renforcer le cadre institutionnel et juridique le plus adéquat pour une éradication définitive de tout usage de l’amiante dans le Pays. C’est aussi grâce à cette étude et autres études et actions similaires (MEDD, ANGeD, Maîtres d’ouvrages) que parmi les trois usines transformant de l’amiante, CIAMIT-Bizerte a été fermée, et les deux autres (SICOAC : 2002 et El Mawassir : 2013) ont totalement été converties à l’usage de substituts de l’amiante, surtout du PVC et PE.

3.1 Enquête et choix des sites à échantillonner

Il est clair que les usages incontrôlés de produits à base d’amiante, notamment au cours des six dernières décennies, ont permis de porter les impacts environnementaux et sur la santé de ces produits en contenant et surtout de leurs déchets, dans pratiquement tous les secteurs de la vie économique. Les secteurs les plus fournis en amianté, en produits à base d’amiante et en déchets amiantés à l’échelle du Pays sont les suivants :

- Les usines de fabrication de produits à base d’amiante : SICOAC (Jebel Jloud) ayant déjà abandonné tout usage de l’amiante, CIAMIT (Bizerte), usine définitivement fermée, et EL Mawassir (Bir Mcharga), seule usine qui a utilisé partiellement l’amiante chrysotile pour la fabrication de tôles et de conduites en amianté ciment jusqu’à 2012; pour les deux premières, les déchets amiantés ont été mis en décharges contrôlées sur leurs sites respectifs.
- L’infrastructure nationale et urbaine notamment en ce qui concerne l’usage pour une longue période de conduites en amianté-ciment pour l’assainissement urbain (réseaux d’assainissement, conduites d’eau pluviale, etc.), pour les réseaux d’adduction et de distribution d’eau AEP, réseaux d’irrigation et de drainage dans les périmètres irrigués publics et privés, et utilisables de mécaniques concernant notamment les courroies de transmission des moteurs et motopompes, etc. ;
- L’usage des tôles en amianté a été si pratique, mais trop trompeur et trop dangereux, pour monopoliser les toitures de parkings, d’usines, d’étables, de hangars de fermes, de toitures d’habitations précaires dans certains faubourgs, ... ; bref le dommage risque d’être assez général dans le Pays ;
- Dans le domaine de l’environnement, les tôles ondulées ont aussi été largement utilisées comme barrières contre l’ensablement (Tozeur, Kebili, Médénine, Tataouine) dans le domaine saharien (haies avec barrières de tôles) pour la lutte contre la désertification ; il n’est aussi pas rare que ces tôles aient été récupérées par le citoyen pour en arranger les toitures de son habitat ;
- Dans le secteur BTP, les produits à base d’amiante (tôles ondulées de toitures, faux plafonds, isolation, caloifugeages,...) ont été porté d’usage de façon incontrôlée dans les bâtiments et buildings (écoles et centres de formation, hôpitaux, administrations, etc.), lieux de concentration de citoyens, et surtout en l’absence du cadre juridique et institutionnel permettant d’assurer la protection de l’environnement et de la santé humaine dans ces lieux ;
- Le secteur industriel : habilement de protection (gants et blousons en amianté tissé), et fabrication de garnitures de friction surtout dans le domaine du transport automobile.
• Le secteur de la mécanique : que ce soient les courroies en amiante qui largement monopolisé les lieux publics et privés, depuis celles de machines dans le moulin du quartier (courroies en chrysotile tissé), jusqu’aux courroies de motopompes équipant les puits d’eau ;
• Etc.

Il est donc clair qu’un inventaire exhaustif des produits à base d’amiante et des déchets qui ont été ou qui peuvent en être générés dans le futur, représente un tâche assez vaste et difficile qui couvre pratiquement tous les secteurs de la vie socio-économique et à l’échelle de tout le Pays.

Pour mieux rendre compte de la situation actuelle sur l’ensemble du territoire, nous avons procédé de la manière suivante :
• la prise en compte des résultats de l’étude 2008, surtout en ce qui concerne le programme de désamiantage des trois sites industriels précédemment cités.
• La réalisation d’une enquête auprès de tous les ministères concernés, plus particulièrement les ministères chargés de l’éducation et de la formation, de la santé, de l’agriculture, de l’environnement et de l’équipement (voir annexe 3). Ceci permet à la fois de sensibiliser les responsables de ces ministères sur les danger de produits à base d’amiante et de leurs déchets, mais aussi de tirer profit dans le cadre du projet, de leurs connaissances et de leurs expériences en ce qui concerne les foyers de concentrations des produits recherchés qui sont promus à se transformer au moyen et long termes en foyers générateurs de déchets amiantés.

N.B : Les réponses à l’enquête sont dans le volume annexe (Annexe A-1)
• Les données recueillies ont permis de sélectionner 100 sites les plus sensibles couvrant tous les secteurs de la vie économique, sur lesquels la campagne d’inspection a été conduite avec deux objectifs principaux : (1) une identification des produits à base d’amiante et (2) une analyse de l’amiante dans l’ambiance, surtout dans les lieux de travail et donc de concentration de citoyens pouvant être inéluctablement exposés et de manière continue à l’atteinte par les fibrilles d’amiante.
• Les résultats obtenus permettent de mieux clarifier les usages les plus usuels des produits amiantés, et d’aborder les techniques et les méthodes les plus adéquates de désamiantage des lieux suspects identifiés, mais aussi d’examiner en une étape ultérieure, les aspects institutionnels et juridiques en la matière, ceci pour mieux renforcer les moyens de lutte contre ce fléau.

3.2 Résultats d’analyses

3.2.1 Résultats des analyses d’amiante de matériaux

Les résultats d’analyses de l’amiante dans les matériaux prélevés dans les lieux inspectés, bâtiments et servitudes connexes, sont présentés en Annexe 4. Au total, ont été inspectés 89 sites (11 inaccessibles) répartis à l’échelle du Pays, dans lesquels des échantillons ont été prélevés pour toutes les composantes d’infrastructures souffrantes de contenir de l’amiante (sols, plafonds, murs, conduites, toitures, isolation, ...). Ont ainsi été collectés et analysés au total 222 échantillons de matériaux dont la plupart ont montré la présence d’amiante chrysotile, ou un mélange crocidolite/chrysotile. Les résultats obtenus pour les différents lieux inspectés (Annexe 4) peuvent être résumés de la manière suivante.
• Sur les 222 échantillons prélevés à l’échelle du Pays, et dont plusieurs (2 à 19 éch.) peuvent appartenir au même site inspecté (El Mawassir, SICOAC, CIAMIT, Hôpitaux, Centres d’éducation et de formation, etc.), 129 échantillons ont révélé la présence manifeste d’amiante chrysotile ou même un mélange crocidolite + chrysotile.
• Sur les 89 lieux d’inspection, 29 sites se sont avérés présenter des composantes formées de chrysotile et d’autres contenant un mélange crocidolite-chrysotile.
Le mélange crocidolite-chrysotile se retrouve le plus souvent dans les conduites de servitudes et dans les toitures en amiance ciment. Ce type d’amiante a été utilisé de manière trop fréquente avant les années 1990s.

- Sur les 89 sites inspectés, 18 ont révélé des composantes à base de chrysotile (conduites, toitures, bardages, isolation).
- Seuls 05 sites se sont révélés indemnes de composante contenant de l’amiante, malgré les soupçons affichés sur ces lieux par les spécialistes en cours d’inspection.

Ces résultats de l’inspection portant sur un échantillon représentatif des lieux fortement fréquentés par la population, montre la présence trop fréquente de produits ou de déchets à base d’amiante auxquels les visiteurs ou occupants des lieux peuvent être trop facilement exposés.

 aussi il important de mentionner que si pour l'heure, l'amiante utilisée quelque soit sa forme (chrysotile souple, ou crocidolite dure et plus dangereuse que la forme précédente) est relativement stabilisée quant au départ de ses microfibrilles dans l'air, puisque la majorité des produits à amiance inspectés sont des tôles et conduites en amiance-ciment, il n’en sera surement pas de même lorsque ces matériaux amiantés vieillissent ou qu’il puisse subir une avarie, un bris ou une démolition, en l’absence des précautions strictes et nécessaires à prendre dans l’une ou l’autre de ces situations.

3.2.2 Analyses d’échantillons de l’air ambiant

Les résultats d’analyses d’amiante dans l’air collecté à partir des sites d’inspection, leurs annexes et leurs servitudes, répartis à l’échelle du pays sont reportés en Annexe 4. Au total quatre vingt neuf (89) échantillons d’air soupçonnés d’être contaminés par l’amiante ont été prélevés et analysés.

Le prélèvement de ces 89 échantillons de micofibrilles d’amiante possibles a été répétant dans soixante huit (68) sites pour tout le pays. Parmi ces sites, quatre ont subi plus d’un prélèvement :
- Dépôt TGM – Tunis : 02 échantillons
- Site de l’Usine CIAMIT-Bizerte : 13 échantillons
- Site de l’Usine EL Mawassir – Bir Mcherga : 06 échantillons
- SICOAC – Jebel Jlou : 04 échantillons

Les résultats d’analyses effectuées par le Laboratoire PLINIOS accrédité, sont donnés en Annexe 5. Les constations majeures sont les suivantes :

> Pour la majorité des sites inspectés et échantillonnés pour les microfibrilles d’amiante dans l’ambiance, les concentrations sont inférieures à la limite de détection de l’appareillage (<0,01 f/cm³).

- Au site de l’Usine CIAMIT à Bizerte, quatre échantillons prélevés dans le bâtiment principal ont donné des concentrations variant de 0,012 à 0,017 f/cm³.
- A l’Usine El Mawassir à Bir Mcherga, un échantillon prélevé dans l’unité de production de plaques de fibrociment, a donné 0,014 f/cm³, et un autre près dans l’ancienne unité de production de conduites en amianté-ciment, a révélé 0,015 f/cm³.
- A l’Usine SICOAC au Jebel Jlou, quatre échantillons se sont révélés contenir des concentrations de microfibrilles de valeurs inférieures à la limite de détection de l’appareillage.

Au plan environnemental et conséquences subséquentes sur la santé des occupants des lieux et visiteurs, toutes les concentrations en microfibrilles d’amiante, inférieures à la limite de détection de l’appareillage, doivent être prises pour leur juste valeur (comprise entre 0 et 0,01 f/cm³ exclu), ce qui de toute manière pour les concentrations le cas échéant, proches de 0,01 par valeur inférieure, celles-ci ne devraient pas être sous-estimées quant à leurs impacts sur l’environnement et sur la santé. Elles peuvent traduire le fait que comme avancé plus haut, dans la majeure partie des matériaux concernés, utilisés pour la construction, les microfibrilles d’amiante (chrysotile ou mélange crocidolite/chrysotile) sont pour l’heure stabilisées sous forme d’amiante ciment (toitures en tôles...
ondulées, faux-plafonds, ciments, conduits divers,...). Il n’en sera cependant pas de même, en cas de bris de ces matériaux à l’occasion d’avaries des bâtiments, de réfection ou de démolition, etc.; ce sont là les conditions les plus favorables et les lus ultimes à un épapilage de l’amiante et à une augmentation subite de ses microfibrilles dangereuses dans l’air ambiant. C’est exactement le danger, pratiquement imprévisible à craindre et c’est pourquoi ce risque devrait être contrôlé, et l’amiante cancérigène éradiquée.

3.2.3 Inspection des sites d’usines de fabrication de produits d’amiante ciment

Ce sont les sites des usines El Mawassir (Bir Mcherga), SICOAC (Jebel Jloud) et CIAMIT (Bizerte). L’objectif d’inspection de ces sites est de contrôler les conséquences sur l’environnement de l’usage et sur la santé dans l’état actuel de ces établissements. Notons que SICOAC a définitivement abandonné l’usage de l’amiante au profit du PVC, à partir de 2008. La CIAMIT a totalement fermé et a subi un programme de décontamination et de mise en décharge contrôlée sur le site de tous les déchets et produits y existant. Ainsi, seule l’usine El Mawassir a continué à utiliser de l’amiante chrysotile (seule) après l’année 2008, pour la production de tôles en amiante ciment et conduites de différents diamètres nominaux, avec un programme à moyen terme (5 ans) d’abandonner définitivement ce type d’usage de l’amiante et de le remplacer par des produits de substitution. La production de la période 2005-2013 avait pu ainsi subvenir aux besoins d’un nombre restreint de clients, surtout ceux qui se trouvent dans l’obligation de réparation de réseaux anciens entièrement construits en amiante, SONEDE et ONAS en particulier.

Sont relevés en cours de visites, les usages de fibres d’amiante dans les procédés de fabrication, les estimations de quantités en stocks de matériaux d’amiante de base et de produits, la mesure de la contamination par l’amiante dans l’air dans les différentes unités en cours de production (El Mawassir, SICOAC) et dans les bâtiments abandonnés (CIAMIT, Bizerte). Il est important de noter que les mesures de contrôle et surtout l’étude de décontamination de ces lieux ne relèvent pas de l’objectif de ces inspections.

3.2.4 Les organismes gros utilisateurs de produits amiantés

Dans cette catégorie se classent en particuliers l’ONAS, la SONEDE et la DGBTH. Ces organismes se retrouvent dans une situation pratiquement irrémédiables, dès que l’on se rappelle que toute l’infrastructure nationale a disposé de canalisations en amiante ciment, pour la mise en place de réseaux AEP, d’assainissement, d’adduction à partir des plans d’eau et distribution dans les périmètres irrigués, réseaux de drainage dans les périmètres et zones hydromorphes,... Encore plus, dans la situation actuelle, la difficulté est plus grande lorsqu’on se rend compte que toute réfection de l’un ou l’autre de ces réseaux, implique un départ en avant dans l’usage de conduites en amiante ciment seules économiques, mais surtout pratiquement les seules adaptées pour procéder à des réparations en cas d’avaries de réseaux anciens. Il en découle que l’abandon du produit amiante ciment par ces organismes, du moins pour les réseaux anciens est loin d’être une situation réconfortante.

Cas de l’ONAS

Lors de la campagne d’inspection conduite par l’équipe du projet, une visite aux locaux de l’ONAS à la Cherguia a permis de reconnaître le stock considérable de conduites en amiante ciment de diamètre nominal variant de 150 à 400, déposé à même le sol autour des bâtiments et hangars de l’ONAS. Des analyses d’échantillons ont permis de révéler une constitution intégrant de l’amiante sous forme de crocidolite et de chrysotile.
Tableau 3-1. Résultats des investigations concernant les produits et déchets d’amianté ciment de l’ONAS

<table>
<thead>
<tr>
<th>No</th>
<th>Code échantillon</th>
<th>Bâtiment</th>
<th>Aire/Chambre</th>
<th>Élément / Composant</th>
<th>Description Matériel</th>
<th>Etat Matériel</th>
<th>Accessibilité</th>
<th>Résultat</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>130412N01</td>
<td>Surface extérieure de l'ONAS</td>
<td>Stock de tuyaux</td>
<td>Tuyaux EN AC DN 150 Classe D (Code art: 11.50.0015)</td>
<td>Amiante ciment</td>
<td>Dégât faible</td>
<td>Elevée</td>
<td>Amiante chrysotile et crocidolite</td>
</tr>
<tr>
<td>2</td>
<td>130412N02</td>
<td>Surface extérieure de l'ONAS</td>
<td>Stock de tuyaux</td>
<td>Tuyaux EN AC DN 400 Classe D (Code art: 11.50.0040)</td>
<td>Amiante ciment</td>
<td>Dégât faible</td>
<td>Elevée</td>
<td>Amiante chrysotile et crocidolite</td>
</tr>
<tr>
<td>3</td>
<td>130412N03</td>
<td>Surface extérieure de l'ONAS</td>
<td>Stock de tuyaux</td>
<td>Tuyaux EN AC DN 200 Classe D (Code art: 11.50.0020)</td>
<td>Amiante ciment</td>
<td>Dégât faible</td>
<td>Elevée</td>
<td>Amiante chrysotile</td>
</tr>
</tbody>
</table>

Cas de la SONEDE, des CRDAs et de la DGBTH

La situation de la SONEDE, des CRDAs (Services de Génie Rural) et de la DGBTH est similaire à celle de l’ONAS. En effet, si pour des réseaux récents, à partir de 2008, les conduites en amianté ciment ont été abandonnées au profit de l’usage de celles en PVC de toutes dimensions, ou celles comportant des composants substituant l’amianté (conduites renforcées par du métal, par des fibres de cellulose ou par du PVC ou du plastique, etc.), le problème n’en est pas de même lorsqu’il s’agit de réparations des avaries occasionnées aux réseaux anciens entièrement constitués de canalisations en amianté ciment.

Heureusement, la plus grande partie du linéaire de ces réseaux anciens étant enterrée, ou située dans des lieux normalement peu fréquentés autrement que par les personnels et agents de contrôle et d’entretien. Le risque de contamination par l’amianté n’en demeure cependant pas moins reporté dans le temps pour les générations futures, ceci selon la durée de vie et l’usage à terme de ces conduites (30 à 40 ans ?!). En finale, tout porte à proposer de mieux abandonner sur place, car tout déterrerement pourrait déboucher sur le risque d’une contamination environnementale. Dès lors, celle-ci devrait être contenue en faisant appel aux techniques et procédures les plus adéquates pour mettre les déchets d’amianté qui seront générés hors de nuisance à la santé et à l’environnement.

3.3 Base de données et SIG issue de l’inventaire réalisé

Un système d’information géographique (SIG) est un système informatisé de gestion de bases de données qui assure la collecte, le stockage, l’extraction, la manipulation, l’analyse et l’affichage de données à référence spatiale.

L’intérêt de l’utilisation du SIG dans le cas de ce projet est l’exploitation optimale de la base de données élaborée suite à l’inventaire exhaustif, et ce pour le suivi à court, moyen et à long termes des ouvrages et des produits contenant l’amianté ainsi que des sites et endroits contaminés dans le territoire tunisien.

3.4 Analyse quantitative des déchets d’amiantes et leur gestion dans le temps

Nous avons noté que les produits en amianté, plus particulièrement ceux en amianté ciment ont été largement utilisés dans les bâtiments à l’échelle de tout le Pays, mais surtout comme consorts de réseaux d’assainissement, d’eau AEP, de drainage dans les périmètres irrigués, de drainage des eaux pluviales, dans les grands travaux de construction de barrages,… L’inventaire consuit dans cette étude est basé sur la sélection et la visite à un échantillon de bâtiments à forte concentration de
public et de visiteurs (hôpitaux, écoles, administrations, ...), d’organismes grand consommateurs d’amiante cimen (ONAS, SONEDE), et usines de fabrication de produits en amiantes ciment.

Les informations recueillies dans le cadre d’enquête et d’examen des lieux, mais aussi les informations obtenues à la lumière de l’historique de production des articles et produits en amiantes ciment dans les usines, permettent permettent de dresser un bilan quantitatif des produits en amiantes ciment qui nécessitent une intervention à différentes échelons.

3.4.1 Matériaux contenant de l’amiante par ministère

En exploitant le SIG on a pu élaborer les tableaux suivants par ministère :

Ministère de l’Education et de l’Enseignement

<table>
<thead>
<tr>
<th>GOUVERNORAT</th>
<th>ADMINISTRATION</th>
<th>BATIMENT</th>
<th>TYPE</th>
<th>QUANTITE (m²)</th>
<th>QUANTITE (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ariana</td>
<td>college technique Ariana</td>
<td>Atelier</td>
<td>Tôle</td>
<td>264</td>
<td>6600</td>
</tr>
<tr>
<td></td>
<td>college technique Ariana</td>
<td>Magasin</td>
<td>Tôle</td>
<td>40</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>C.R.E d’Ariana</td>
<td>Depot + Garage de voiture</td>
<td>Tôle</td>
<td>140</td>
<td>3500</td>
</tr>
<tr>
<td>Beja</td>
<td>commissariat regional de l’éducation</td>
<td>Magasin</td>
<td>Tôle</td>
<td>69</td>
<td>1718,75</td>
</tr>
<tr>
<td></td>
<td>Ecole primaire tebaba nefza</td>
<td>Bloc sanitaire</td>
<td>Tôle</td>
<td>60</td>
<td>1500</td>
</tr>
<tr>
<td></td>
<td>Ecole primaire ali kalsadi beja nord</td>
<td>Atelier</td>
<td>Tôle</td>
<td>120</td>
<td>3000</td>
</tr>
<tr>
<td></td>
<td>Ecole primaire victor hugo nord</td>
<td>Atelier</td>
<td>Tôle</td>
<td>150</td>
<td>3750</td>
</tr>
<tr>
<td></td>
<td>Ecole primaire slama testour</td>
<td>cantine +abri</td>
<td>Tôle</td>
<td>80</td>
<td>2000</td>
</tr>
<tr>
<td>Ben Arous</td>
<td>Ecole Primaire khaznadar ezzahra</td>
<td>salle de classe</td>
<td>Tôle</td>
<td>144</td>
<td>3600</td>
</tr>
<tr>
<td></td>
<td>Ecole Primaire megrine</td>
<td>salle de classe</td>
<td>Tôle</td>
<td>96</td>
<td>2400</td>
</tr>
<tr>
<td></td>
<td>Ecole Primaire Boumhel2</td>
<td>salle de classe</td>
<td>Tôle</td>
<td>96</td>
<td>2400</td>
</tr>
<tr>
<td></td>
<td>Ecole Primaire Saline Rades</td>
<td>salle de classe</td>
<td>Tôle</td>
<td>48</td>
<td>1200</td>
</tr>
<tr>
<td></td>
<td>Ecole Primaire Bouchoucha hammem lif</td>
<td>salle de classe</td>
<td>Tôle</td>
<td>96</td>
<td>2400</td>
</tr>
<tr>
<td>Bizerte</td>
<td>Parking</td>
<td>Parking</td>
<td>Tôle</td>
<td>100</td>
<td>2500</td>
</tr>
<tr>
<td></td>
<td>Parking</td>
<td>Parking</td>
<td>Tôle</td>
<td>200</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>Parking</td>
<td>Parking</td>
<td>Tôle</td>
<td>1000</td>
<td>25000</td>
</tr>
<tr>
<td></td>
<td>Ecole primaire mateur dore</td>
<td>dore</td>
<td>Tôle</td>
<td>500</td>
<td>12500</td>
</tr>
<tr>
<td></td>
<td>Ecole primaire pasteur mateur</td>
<td>dore</td>
<td>Tôle</td>
<td>400</td>
<td>10000</td>
</tr>
<tr>
<td></td>
<td>Lycée mateur</td>
<td>dore</td>
<td>Tôle</td>
<td>200</td>
<td>5000</td>
</tr>
<tr>
<td></td>
<td>College bou chemla jarzouna</td>
<td>dore</td>
<td>Tôle</td>
<td>100</td>
<td>2500</td>
</tr>
<tr>
<td></td>
<td>Lycée ibn charaf Manzel bourguiba</td>
<td>dore</td>
<td>Tôle</td>
<td>300</td>
<td>7500</td>
</tr>
<tr>
<td>Gabes</td>
<td>Ecole primaire av bourguiba gabes ville</td>
<td>Industriel équipements +</td>
<td>Matériel</td>
<td>25</td>
<td>625</td>
</tr>
<tr>
<td></td>
<td>Ecole primaire cité el Manara Gabes Sud</td>
<td>Industriel + garage</td>
<td>Tôle</td>
<td>70</td>
<td>1750</td>
</tr>
<tr>
<td></td>
<td>Ecole primaire gannouche ouest</td>
<td>Industriel atelier</td>
<td>Tôle</td>
<td>70</td>
<td>1750</td>
</tr>
<tr>
<td></td>
<td>Ecole primaire elmida methouia</td>
<td>Industriel depot</td>
<td>Tôle</td>
<td>14</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>Ecole primaire 2 mars 1934 matmata nouvel</td>
<td>Industriel atelier</td>
<td>Tôle</td>
<td>84</td>
<td>2100</td>
</tr>
<tr>
<td></td>
<td>Ecole primaire Argoub Mareth</td>
<td>Vestiaire</td>
<td>Tôle</td>
<td>59</td>
<td>1462,5</td>
</tr>
<tr>
<td></td>
<td>Ecole préparatoire cité med ali gables</td>
<td>Industriel depot</td>
<td>Tôle</td>
<td>24</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>commissariat Régional de Gabès</td>
<td>Industriel Parking</td>
<td>Tôle</td>
<td>100</td>
<td>2500</td>
</tr>
<tr>
<td></td>
<td>Ecole préparatoire chennini</td>
<td>Industriel Parking</td>
<td>Tôle</td>
<td>9</td>
<td>225</td>
</tr>
<tr>
<td>Établissement</td>
<td>Type</td>
<td>Matière</td>
<td>Quantité (kg)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---------------</td>
<td>---------</td>
<td>---------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lycée Sombat El Hamma</td>
<td>Industriel Parking</td>
<td>Tôle</td>
<td>12</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>Ecole Préparatoire Matmata</td>
<td>Industriel Dépôt</td>
<td>Tôle</td>
<td>39</td>
<td>962,5</td>
<td></td>
</tr>
<tr>
<td>Ecole Préparatoire Manel El Habib</td>
<td>Industriel garage</td>
<td>Tôle</td>
<td>112</td>
<td>2809</td>
<td></td>
</tr>
<tr>
<td>Lycée Mareth</td>
<td>Industriel (Parking + Dépôt)</td>
<td>Tôle</td>
<td>178</td>
<td>4450</td>
<td></td>
</tr>
<tr>
<td>Ecole Préparatoire Ibn Charaf Mareth</td>
<td>Industriel Parking</td>
<td>Tôle</td>
<td>75</td>
<td>1875</td>
<td></td>
</tr>
<tr>
<td>Ecole Préparatoire Dkhilet Toujane Mareth</td>
<td>Industriel Parking</td>
<td>Tôle</td>
<td>30</td>
<td>750</td>
<td></td>
</tr>
<tr>
<td>Ecole Préparatoire Ahed Jadid Mareth</td>
<td>Industriel Dépôt</td>
<td>Tôle</td>
<td>29</td>
<td>725</td>
<td></td>
</tr>
<tr>
<td>Ecole Préparatoire technique Gafsa</td>
<td>Industriel (atelier + magasin)</td>
<td>Tôle</td>
<td>332</td>
<td>8300</td>
<td></td>
</tr>
<tr>
<td>Ecole primaire Gafsa Centre</td>
<td>Administration</td>
<td>Tôle</td>
<td>200</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>Ecole primaire Av Bourguiba Gafsa</td>
<td>Administration galerie</td>
<td>Tôle</td>
<td>200</td>
<td>5000</td>
<td></td>
</tr>
<tr>
<td>Ecole primaire Whriba Gafsa Nord</td>
<td>Administration</td>
<td>Tôle</td>
<td>134</td>
<td>3350</td>
<td></td>
</tr>
<tr>
<td>Ecole primaire Henchir Helfa Gafsa Nord</td>
<td>Administration</td>
<td>Tôle</td>
<td>50</td>
<td>1250</td>
<td></td>
</tr>
<tr>
<td>Ecole primaire Ahmed Tili Guettar</td>
<td>Administration</td>
<td>Tôle</td>
<td>48</td>
<td>1200</td>
<td></td>
</tr>
<tr>
<td>Ecole primaire Bouomrane 2 Guettar</td>
<td>Administration</td>
<td>Tôle</td>
<td>144</td>
<td>3600</td>
<td></td>
</tr>
<tr>
<td>Commissariat Régional de Jendouba</td>
<td>Dépôt</td>
<td>Tôle</td>
<td>257</td>
<td>6412,5</td>
<td></td>
</tr>
<tr>
<td>Centre régionale de formation</td>
<td>galerie</td>
<td>Tôle</td>
<td>180</td>
<td>4500</td>
<td></td>
</tr>
<tr>
<td>Lycée rue de la liberté</td>
<td>Dépôt</td>
<td>Tôle</td>
<td>196</td>
<td>4900</td>
<td></td>
</tr>
<tr>
<td>Parking</td>
<td>Parking</td>
<td>Tôle</td>
<td>90</td>
<td>2250</td>
<td></td>
</tr>
<tr>
<td>Lycée Khameis Hajri</td>
<td>Vestiaire</td>
<td>Tôle</td>
<td>140</td>
<td>3500</td>
<td></td>
</tr>
<tr>
<td>Ecole primaire Elfaouz</td>
<td>Bloc sanitaire</td>
<td>Tôle</td>
<td>2</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Ecole primaire Belajrija</td>
<td>Dépôt</td>
<td>Tôle</td>
<td>24</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>Ecole primaire avenue el Jamma Boussem</td>
<td>Dépôt</td>
<td>Tôle</td>
<td>15</td>
<td>375</td>
<td></td>
</tr>
<tr>
<td>Ecole primaire Elmankouch Boussem</td>
<td>Dépôt</td>
<td>Tôle</td>
<td>4</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Ecole primaire Elbaldia Balta Bouan</td>
<td>bloc sanitaire</td>
<td>Tôle</td>
<td>21</td>
<td>525</td>
<td></td>
</tr>
<tr>
<td>Ecole primaire Barrage el Kasseb Balta Bou awen</td>
<td>2 salles de classes</td>
<td>Tôle</td>
<td>60</td>
<td>1500</td>
<td></td>
</tr>
<tr>
<td>Ecole primaire El Balta Bou awen</td>
<td>Atelier</td>
<td>Tôle</td>
<td>84</td>
<td>2100</td>
<td></td>
</tr>
<tr>
<td>Lycée Ain Drahem</td>
<td>Logement de fonction</td>
<td>Tôle</td>
<td>58</td>
<td>1450</td>
<td></td>
</tr>
<tr>
<td>Collège Babouch Ain Drahem</td>
<td>Dépôt</td>
<td>Tôle</td>
<td>15</td>
<td>375</td>
<td></td>
</tr>
<tr>
<td>Ecole primaire Babouch Ain Drahem</td>
<td>Atelier</td>
<td>Tôle</td>
<td>80</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>Ecole primaire Wed Ezzin Ain Drahem</td>
<td>Cantine</td>
<td>Tôle</td>
<td>80</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>Lycée Tabarka</td>
<td>Dépôt de gaz + 2</td>
<td>Tôle</td>
<td>160</td>
<td>4000</td>
<td></td>
</tr>
<tr>
<td>Ecole primaire Ain Snoussi Tabarka</td>
<td>Abri de voiture</td>
<td>Tôle</td>
<td>41</td>
<td>1012,5</td>
<td></td>
</tr>
<tr>
<td>Lycée 2 mars Tabarka</td>
<td>Salle de gymnastique</td>
<td>Tôle</td>
<td>150</td>
<td>3750</td>
<td></td>
</tr>
<tr>
<td>Lycée 2 mars Tabarka</td>
<td>Vestiaire</td>
<td>Tôle</td>
<td>140</td>
<td>3500</td>
<td></td>
</tr>
<tr>
<td>Lycée 2 mars Tabarka</td>
<td>Buvette</td>
<td>Tôle</td>
<td>20</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Lycée 2 mars Tabarka</td>
<td>Dépôt de gaz</td>
<td>Tôle</td>
<td>20</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------------------</td>
<td>-----</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecole primaire Bou Terfes</td>
<td>Atelier</td>
<td>120</td>
<td>3000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecole primaire oued meliz</td>
<td>Dépôt</td>
<td>100</td>
<td>2500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecole primaire Edkhaylia</td>
<td>Bâtiment</td>
<td>4</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lycée fernana</td>
<td>depot de gaz</td>
<td>4</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecole primaire ennajeh om</td>
<td>Dépôt</td>
<td>24</td>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecole primaire Sidi Siid</td>
<td>bloc sanitaire</td>
<td>15</td>
<td>375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecole primaire Ejlil</td>
<td>Vesteira</td>
<td>33</td>
<td>825</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecole primaire Ejlil</td>
<td>Dépôt</td>
<td>8</td>
<td>190</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecole primaire Ejlil</td>
<td>6 salles de classe + bureau + logement</td>
<td>280</td>
<td>7000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecole primaire Ain</td>
<td>2 salles de classe + bureau + logement</td>
<td>181</td>
<td>4532</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecole primaire Kef</td>
<td>cuisine</td>
<td>51</td>
<td>1275</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecole primaire Av</td>
<td>2 Dépôts</td>
<td>32</td>
<td>806,25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kebili</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.R.E</td>
<td>localde stockage</td>
<td>15</td>
<td>375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking</td>
<td>parking</td>
<td>15</td>
<td>375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecole primaire zawet</td>
<td>salle d’education</td>
<td>48</td>
<td>1200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kef</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commissariat de l’education de kef</td>
<td>Administration</td>
<td>100</td>
<td>2500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commissariat de l’education de kef</td>
<td>salle de sport</td>
<td>750</td>
<td>18750</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commissariat de l’education de kef</td>
<td>Atelier</td>
<td>200</td>
<td>5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Commissariat de l’education de kef</td>
<td>salle de classe</td>
<td>500</td>
<td>12500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking</td>
<td>Parking</td>
<td>150</td>
<td>375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking</td>
<td>Parking</td>
<td>200</td>
<td>5000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mahdia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parking</td>
<td>Parking</td>
<td>120</td>
<td>3000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Synthèse de l'étude sur les usages de l’amiante et la gestion des déchets amiantés en Tunisie

DGEQV-2013

<table>
<thead>
<tr>
<th>Parking</th>
<th>Parking</th>
<th>Tôle</th>
<th>Parking</th>
<th>Tôle</th>
<th>Parking</th>
<th>Tôle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parking</td>
<td>Parking</td>
<td>40</td>
<td>Parking</td>
<td>1000</td>
<td>Parking</td>
<td>80</td>
</tr>
<tr>
<td>Parking</td>
<td>Parking</td>
<td>2000</td>
<td>Parking</td>
<td>1750</td>
<td>Parking</td>
<td>80</td>
</tr>
<tr>
<td>Parking</td>
<td>Parking</td>
<td>2000</td>
<td>Parking</td>
<td>1500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ecole primaire route tatouine medenine	**Dépôt**	**Tôle**	**18**	**450**
Ecole primaire bougrara medenine	**garage**	**Tôle**	**18**	**450**
Ecole primaire Chaab rebaya medenine	**Dépôt**	**Tôle**	**23**	**578**
Ecole primaire cite helal medenine	**Administration**	**Tôle**	**12**	**300**
Ecole primaire al amal medenine	**Dépôt**	**Tôle**	**12**	**300**
Ecole primaire ejoref sidi makhlouf	**Administration**	**Tôle**	**64**	**1600**
Ecole primaire koutine sidi makhlouf	**Préau**	**Tôle**	**48**	**1200**
Ecole primaire el briket Sidi Makhlouf	**rectoaire**	**Tôle**	**10**	**250**
Ecole primaire 2 mars beni khedech	**garage**	**Tôle**	**18**	**450**
Ecole primaire 2 mars beni khedech	**Dépôt**	**Tôle**	**64**	**1600**
Ecole primaire chobat Fadhel beni khedech	**Administration**	**Tôle**	**162**	**4050**
Ecole primaire Demmer beni khedech	**Administration**	**Tôle**	**48**	**1200**
Ecole primaire Gilb dhieb beni kehedache	**Administration**	**Tôle**	**216**	**5400**
Ecole primaire cité ouine benguerrden	**Parking de voiture**	**Tôle**	**63**	**1575**
Ecole primaire av bourguiba zariz	**garage**	**Tôle**	**12**	**300**
Ecole primaire hmadi zariz	**agricole**	**Tôle**	**15**	**375**
Ecole primaire ouad abd nebi zariz	**Dépôt**	**Tôle**	**16**	**400**
Ecole primaire ksar ezaaria zariz	**Vestiaire**	**Tôle**	**23**	**562,5**
Ecole primaire bahadha zariz	**Dépôt**	**Tôle**	**20**	**500**
Ecole primaire Mozraya houmet souk	**Dépôt**	**Tôle**	**30**	**750**
Ecole primaire 2 mars boumelel houmet souk	**Industriel**	**Tôle**	**24**	**600**
Ecole primaire Guizen houmet souk	**Industriel**	**Tôle**	**18**	**450**
Ecole primaire morgan houmet souk	**Dépôt**	**Tôle**	**8**	**200**
Ecole primaire Guecheine houmet souk	**Dépôt**	**Tôle**	**24**	**600**
Ecole primaire Cité Taourit houmet souk	**Administration**	**Tôle**	**375**	**9375**
Ecole primaire Mellita houmet souk	**Industriel**	**Tôle**	**18**	**450**
Ecole primaire 2 Mars 34 Ajim	**Vestiaire**	**Tôle**	**30**	**750**
Ecole primaire telet Ajim	**préau**	**Tôle**	**30**	**750**
Ecole primaire Beni Maguel Midoun	**Dépôt**	**Tôle**	**10**	**250**
Ecole primaire sedouikech midoun	**Vestiaire**	**Tôle**	**60**	**1500**
Ecole primaire robana midoun	**Dépôt**	**Tôle**	**16**	**400**
Ecole préparatoire bougrara	**garage**	**Tôle**	**36**	**900**
Ecole préparatoire cité zitouni	**Administration**	**Tôle**	**50**	**1250**

Medenine
<table>
<thead>
<tr>
<th>localisation</th>
<th>Établissement</th>
<th>Type</th>
<th>Matériau</th>
<th>Taille</th>
<th>Surface</th>
</tr>
</thead>
<tbody>
<tr>
<td>medenine</td>
<td>Ecole préparatoire Hossi Omar medenine</td>
<td>Dépôt</td>
<td>Tôle</td>
<td>40</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>Lycée alahd aljadid medenine</td>
<td>Dépôt</td>
<td>Tôle</td>
<td>60</td>
<td>1500</td>
</tr>
<tr>
<td></td>
<td>Lycée bni khedh midenine</td>
<td>Vestiaire</td>
<td>Tôle</td>
<td>60</td>
<td>1500</td>
</tr>
<tr>
<td></td>
<td>Parking</td>
<td>Parking</td>
<td>Tôle</td>
<td>240</td>
<td>6000</td>
</tr>
<tr>
<td></td>
<td>Lycée benguerden 2</td>
<td>Administration</td>
<td>Tôle</td>
<td>260</td>
<td>6500</td>
</tr>
<tr>
<td></td>
<td>Lycée 2 mars 34 zarzis</td>
<td>Dépôt</td>
<td>Tôle</td>
<td>40</td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td>Ecole préparatoire erriadh H souk</td>
<td>Administration</td>
<td>Tôle</td>
<td>50</td>
<td>1250</td>
</tr>
<tr>
<td></td>
<td>Ecole préparatoire Sedouikech midoun</td>
<td>Administration</td>
<td>Tôle</td>
<td>55</td>
<td>1375</td>
</tr>
<tr>
<td></td>
<td>Ecole préparatoire mahboubine midoun</td>
<td>Administration</td>
<td>Tôle</td>
<td>800</td>
<td>20000</td>
</tr>
<tr>
<td></td>
<td>Lycée elmay midoun</td>
<td>Administration</td>
<td>Tôle</td>
<td>144</td>
<td>3612</td>
</tr>
<tr>
<td>Monastir</td>
<td>Lycée hedi khefacha monastir</td>
<td>Administration</td>
<td>Tôle</td>
<td>100</td>
<td>2500</td>
</tr>
<tr>
<td></td>
<td>Centre R de l’éducation et de formation continue Monastir</td>
<td>Administration</td>
<td>Tôle</td>
<td>60</td>
<td>1500</td>
</tr>
<tr>
<td></td>
<td>Ecole Préparatoire Bennene</td>
<td>Administration</td>
<td>Tôle</td>
<td>30</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td>Ecole Primaire Bennene salem hamden</td>
<td>éducatif</td>
<td>Tôle</td>
<td>30</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td>Ecole Primaire 20 mars Bennene</td>
<td>éducatif</td>
<td>Tôle</td>
<td>30</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td>Ecole Primaire el houde moknine</td>
<td>éducatif</td>
<td>Tôle</td>
<td>30</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td>Ecole Primaire farhat hached bi hessan</td>
<td>éducatif</td>
<td>Tôle</td>
<td>30</td>
<td>750</td>
</tr>
<tr>
<td></td>
<td>Ecole preparatoire Taher haded Nabeul</td>
<td>Salle d’eau sportive</td>
<td>Tôle</td>
<td>27</td>
<td>675</td>
</tr>
<tr>
<td></td>
<td>Ecole primaire riad el maamoura</td>
<td>administration+ + éducatif</td>
<td>Tôle</td>
<td>84</td>
<td>2100</td>
</tr>
<tr>
<td></td>
<td>Inspection langue arabe beni khar</td>
<td>Administration</td>
<td>Tôle</td>
<td>14</td>
<td>350</td>
</tr>
<tr>
<td></td>
<td>Ecole primaire bassatine manzel temim</td>
<td>agricole</td>
<td>Tôle</td>
<td>24</td>
<td>600</td>
</tr>
<tr>
<td></td>
<td>Ecole primaire aamrine Manzel bouzefla</td>
<td>préau + salle de classe</td>
<td>Tôle</td>
<td>20</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>Ecole primaire ghourabi manzel bouzefla</td>
<td>préau + salle de classe</td>
<td>Tôle</td>
<td>20</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>Lycée manzel bouzefla</td>
<td>Magasin</td>
<td>Tôle</td>
<td>16</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>Lycée manzel bouzefla</td>
<td>garage</td>
<td>Tôle</td>
<td>16</td>
<td>400</td>
</tr>
<tr>
<td></td>
<td>Ecole primaire liberté grombalia</td>
<td>depot demolution prévue en 2012</td>
<td>Tôle</td>
<td>180</td>
<td>4500</td>
</tr>
<tr>
<td></td>
<td>Ecole primaire taieb mhiri Hammamet</td>
<td>préau</td>
<td>Tôle</td>
<td>30</td>
<td>750</td>
</tr>
<tr>
<td>Nabeul</td>
<td>Lycée cité el habib</td>
<td>Industriel</td>
<td>Tôle</td>
<td>116</td>
<td>2900</td>
</tr>
<tr>
<td></td>
<td>Lycée ali bourguiba mahres</td>
<td>Industriel</td>
<td>Tôle</td>
<td>20</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>Lycée graiba</td>
<td>Industriel</td>
<td>Tôle</td>
<td>55</td>
<td>1375</td>
</tr>
<tr>
<td></td>
<td>Parking</td>
<td>Parking</td>
<td>Tôle</td>
<td>75</td>
<td>1875</td>
</tr>
<tr>
<td></td>
<td>Ecole préparatoire sekhira</td>
<td>garage</td>
<td>Tôle</td>
<td>45</td>
<td>1125</td>
</tr>
<tr>
<td></td>
<td>Ecole préparatoire ennahour bir ali</td>
<td>Administration</td>
<td>Tôle</td>
<td>60</td>
<td>1500</td>
</tr>
<tr>
<td></td>
<td>Ecole préparatoire technique el ahed el jedid</td>
<td>Industriel</td>
<td>Tôle</td>
<td>204</td>
<td>5100</td>
</tr>
<tr>
<td></td>
<td>Parking</td>
<td>parking</td>
<td>Tôle</td>
<td>15</td>
<td>375</td>
</tr>
</tbody>
</table>

COMETE Engineering/PLINIOS SA
Synthèse de l’étude sur les usages de l’amiante et la gestion des déchets amiantés en Tunisie

DGEQV-2013

Lycée abou el kacem chebi chihia
- **sport**
- **Tôle**
- **6**
- **150**

Lycée el khali route sidi mansour
- **garage**
- **Tôle**
- **20**
- **500**

Ecole preparatoire ibn haithem sfax
- **Vestiaire**
- **Tôle**
- **60**
- **1500**

Ecole preparatoire ahmed malek sfax
- **Dépôt**
- **Tôle**
- **20**
- **500**

Ecole preparatoire markez bou asida
- **Dépôt**
- **Tôle**
- **60**
- **1500**

Parking
- **parking**
- **Tôle**
- **30**
- **750**

Ecole preparatoire moustafa selemi
- **vestiaire + atelier**
- **Tôle**
- **50**
- **1250**

Parking
- **parking**
- **Tôle**
- **60**
- **1500**

Sidi Bouzid

Depot +parking de voiture a la CRE
- **Administration**
- **Tôle**
- **250**
- **6250**

Depot +salle de classe O l'ecole P etai mhiri
- **Administration**
- **Tôle**
- **150**
- **3750**

Garage dans à l’Ec preparatoire sidi ali ben aoun
- **Administration**
- **Tôle**
- **20**
- **500**

Siliana

Commissariat de l’education de siliana
- **Administration**
- **Tôle**
- **180**
- **4500**

College secondaire rouhia
- **Administration**
- **Tôle**
- **200**
- **5000**

Sousse

Ecole primaire sidi mtir bouficha
- **salle de classe+cantine**
- **Tôle**
- **60**
- **1500**

Ecole primaire sidi moureddine M'saken
- **salle de classe+abri**
- **Tôle**
- **90**
- **2250**

Ecole primaire sidi knayes M'saken
- **salle de classe+abri**
- **Tôle**
- **172**
- **4300**

Tunis

Ecole Primaire ezdihar el ourdia
- **3 salles de classe**
- **Tôle**
- **94**
- **2350**

Ecole Primaire 33 rue charles de gaulle
- **Dépôt**
- **Tôle**
- **219**
- **5475**

Ecole Primaire 33 rue Charles de Gaulle
- **coulouir**
- **Tôle**
- **40**
- **1000**

Ecole Primaire maakel ezza’m
- **salle de classe**
- **Tôle**
- **30**
- **750**

Ecole Primaire maakel ezza’m
- **Atelier**
- **Tôle**
- **14**
- **350**

college rue eljahedh elkram
- **Bloc sanitaire**
- **Vestiaire**
- **Tôle**
- **18**
- **450**

college el hfsia
- **Dépôt**
- **Tôle**
- **32**
- **800**

college el hfsia
- **Magasin**
- **Tôle**
- **20**
- **500**

college rue carthage demech
- **Vestiaire**
- **Tôle**
- **85**
- **2125**

Zaghouane

lycée cité ennozha zaghouan
- **Dépôt**
- **Tôle**
- **500**
- **12500**

Ecole primaire ibn khaldoun zaghouan
- **entrée principale de l'école**
- **Tôle**
- **50**
- **1250**

Parking
- **parking**
- **Tôle**
- **50**
- **1250**

Ecole primaire om aboueb el kadima el fahes
- **Dépôt**
- **Tôle**
- **40**
- **1000**

Parking
- **parking**
- **Tôle**
- **20**
- **500**

Ecole préparatoire rue de l'indépendance Zaghouane
- **Dépôt**
- **Tôle**
- **500**
- **12500**

Total (Kg)

| Total (Kg) | 522598,5 |
Ministère de l’Agriculture

<table>
<thead>
<tr>
<th>ADMINISTRATION</th>
<th>BATIMENT</th>
<th>TYPE</th>
<th>QUANTITE (ml ou m2)</th>
<th>QUANTITE (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRDA BEN AROUS</td>
<td>PARC BEN NRONJI-MORNEG-MEGRINE</td>
<td>Tôle</td>
<td>1500</td>
<td>37500</td>
</tr>
<tr>
<td>SONAPROV</td>
<td>ADMINISTRATION+ATELIER+MAGASIN+PARC</td>
<td>Tôle</td>
<td>800</td>
<td>20000</td>
</tr>
<tr>
<td>SONAPROV</td>
<td>sous-sol</td>
<td>Conduite</td>
<td>40</td>
<td>8000</td>
</tr>
<tr>
<td>OTD</td>
<td>Magasin</td>
<td>Tôle</td>
<td>1295</td>
<td>32375</td>
</tr>
<tr>
<td>OTD</td>
<td>SOUS TERRAINE</td>
<td>Conduite</td>
<td>6072</td>
<td>1214400</td>
</tr>
<tr>
<td>OTD</td>
<td>Magasin</td>
<td>Conduite</td>
<td>86</td>
<td>17200</td>
</tr>
<tr>
<td>ONH</td>
<td>CENTRE REGIONAL DE L’ONH A ZARZIS</td>
<td>Tôle</td>
<td>400</td>
<td>10000</td>
</tr>
<tr>
<td>APIP PORT DE PECHE LA GOUTE</td>
<td>PARKING SIEGE APIP</td>
<td>Tôle</td>
<td>385</td>
<td>9625</td>
</tr>
<tr>
<td>OFFICE DES CEREALES</td>
<td>SILO BIR KASSAA</td>
<td>Tôle</td>
<td>140</td>
<td>3500</td>
</tr>
<tr>
<td>GROUPEMENT</td>
<td>CONSTITUANT LE TOIT</td>
<td>Tôle</td>
<td>490</td>
<td>12250</td>
</tr>
<tr>
<td>AGENCE DES PORTS ET DES INSTALLATIONS DE PECHE</td>
<td>SOUS TERRAIN</td>
<td>Conduite</td>
<td>250</td>
<td>50000</td>
</tr>
<tr>
<td>APIP</td>
<td>PORT ELKETF</td>
<td>Conduite</td>
<td>250</td>
<td>50000</td>
</tr>
<tr>
<td>APIP PORT LOUZA-LOUATA</td>
<td>SOUS TERRAIN</td>
<td>Conduite</td>
<td>120</td>
<td>24000</td>
</tr>
<tr>
<td>AGENCE DES PORTS ET DES INSTALLATIONS DE PECHE</td>
<td>TOIT DE LA HALLE A MAREE</td>
<td>Tôle</td>
<td>480</td>
<td>12000</td>
</tr>
<tr>
<td>APIP SKHIRA</td>
<td>Toiture</td>
<td>Tôle</td>
<td>130</td>
<td>3250</td>
</tr>
<tr>
<td>APIP SKHIRA</td>
<td>Toiture</td>
<td>Conduite</td>
<td>160</td>
<td>32000</td>
</tr>
<tr>
<td>AGENCE DES PORTS ET DES INSTALLATIONS DE PECHE</td>
<td>TOLE POUR HALLE DE RAMANDAGE SUR QUAIE</td>
<td>Tôle</td>
<td>490</td>
<td>12250</td>
</tr>
<tr>
<td>AGENCE DES PORTS ET DES INSTALLATIONS DE PECHE</td>
<td>CONDUITE D’EAU</td>
<td>Conduite</td>
<td>225</td>
<td>45000</td>
</tr>
<tr>
<td>AGENCE DES PORTS ET DES INSTALLATIONS DE PECHE</td>
<td>TOL POUR HALLE DE RAMANDAGE SUR QUAIE</td>
<td>Tôle</td>
<td>490</td>
<td>12250</td>
</tr>
<tr>
<td>APIP PORT DE PECHE TABARKA</td>
<td>SOUS CON</td>
<td>Conduite</td>
<td>1126</td>
<td>225200</td>
</tr>
<tr>
<td>AGENCE DES PORTS ET DES INSTALLATIONS DE PECHE</td>
<td>SOUS CHAUSSEE</td>
<td>Conduite</td>
<td>450</td>
<td>90000</td>
</tr>
<tr>
<td>CENTRE DE FORMATION PROFESSIONNELLE AGRICOLE DE JAMMEL</td>
<td>MAGASIN+LOCALES DE REFORME</td>
<td>Tôle</td>
<td>250</td>
<td>6250</td>
</tr>
<tr>
<td>CENTRE DE FORMATION PROFESSIONNELLE AGRICOLE DE JAMMEL</td>
<td>MAGASIN+LOCALES DE REFORME</td>
<td>Tôle</td>
<td>250</td>
<td>6250</td>
</tr>
<tr>
<td>AGENCE DES PORTS ET DES INSTALLATIONS DE PECHE</td>
<td>Atelier</td>
<td>Tôle</td>
<td>72</td>
<td>1800</td>
</tr>
<tr>
<td>AGENCE DES PORTS ET DES INSTALLATIONS DE PECHE</td>
<td>Atelier</td>
<td>Tôle</td>
<td>56</td>
<td>1400</td>
</tr>
<tr>
<td>AGENCE DES PORTS ET DES INSTALLATIONS DE PECHE</td>
<td>STATION GAZOIL</td>
<td>Tôle</td>
<td>72</td>
<td>1800</td>
</tr>
<tr>
<td>AGENCE DES PORTS ET DES INSTALLATIONS DE PECHE</td>
<td>FABRIQUE DE GLACE</td>
<td>Tôle</td>
<td>22</td>
<td>550</td>
</tr>
<tr>
<td>AGENCE DES PORTS ET DES INSTALLATIONS DE PECHE</td>
<td>STE MARIN PECHEUR</td>
<td>Tôle</td>
<td>288</td>
<td>7200</td>
</tr>
<tr>
<td>AGENCE DES PORTS ET DES INSTALLATIONS DE PECHE</td>
<td>STE LOULOU MOHSEN</td>
<td>Tôle</td>
<td>144</td>
<td>3600</td>
</tr>
<tr>
<td>AGENCE DES PORTS ET DES INSTALLATIONS DE PECHE</td>
<td>STATION GAZOIL</td>
<td>Tôle</td>
<td>120</td>
<td>3000</td>
</tr>
</tbody>
</table>
Synthèse de l’étude sur les usages de l’amiante et la gestion des déchets amiantés en Tunisie — DGEQV-2013

<table>
<thead>
<tr>
<th>AGENCE DES PORTS ET DES INSTALLATIONS DE PÊCHE</th>
<th>Type</th>
<th>Quantité (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atelier</td>
<td>Tôle</td>
<td>48</td>
</tr>
<tr>
<td>STE STPM</td>
<td>Tôle</td>
<td>520</td>
</tr>
<tr>
<td>CHANTIER</td>
<td>Tôle</td>
<td>100</td>
</tr>
<tr>
<td>Atelier</td>
<td>Tôle</td>
<td>90</td>
</tr>
<tr>
<td>CENTRE DE FORMATION PROFESSIONNELLE AGRICOLE</td>
<td>Tôle</td>
<td>420</td>
</tr>
</tbody>
</table>

Total (Kg): 1982100

Ministère de l’Equipement et de l’Environnement

<table>
<thead>
<tr>
<th>GOUVERNORAT</th>
<th>ADMINISTRATION</th>
<th>BATIMENT</th>
<th>TYPE</th>
<th>QUANTITÉ (m²)</th>
<th>QUANTITÉ (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zaghouane</td>
<td>DIRECTION REGIONALE DE ZAGHOUANE</td>
<td>TOITURE MAGASIN</td>
<td>Tôle</td>
<td>560</td>
<td>14000</td>
</tr>
<tr>
<td>Tunis</td>
<td>CENTRE D’ESSAIS ET DES TECHNIQUES DE CONSTRUCTION</td>
<td>TOITURE HALL ET GARAGE</td>
<td>Tôle</td>
<td>120</td>
<td>3000</td>
</tr>
<tr>
<td>Medenine</td>
<td>DIRECTION REGIONALE DE MEDNINE</td>
<td>Magasin</td>
<td>Autres</td>
<td>30</td>
<td>750</td>
</tr>
<tr>
<td>Beja</td>
<td>DIRECTION REGIONALE DE BEJA</td>
<td>PARKING DE LA DIRECTION</td>
<td>Tôle</td>
<td>36</td>
<td>900</td>
</tr>
</tbody>
</table>

Total: 18650

Ministère de transport

<table>
<thead>
<tr>
<th>GOUVERNORAT</th>
<th>ADMINISTRATION</th>
<th>BATIMENT</th>
<th>TYPE</th>
<th>QUANTITÉ (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tunis</td>
<td>SOCIETE DES TRANSPORTS DE TUNIS-TRANSTU</td>
<td>DEPOT METRO TUNISO-MARINE</td>
<td>Conduite</td>
<td>2000</td>
</tr>
<tr>
<td>Bizerte</td>
<td>OMMP DIRECTION DU PORT DE RADES</td>
<td>TOITURE DU MAGASIN LOUE A UTIKA (FOIRE)</td>
<td>Tôle</td>
<td>3000</td>
</tr>
<tr>
<td>Gabes</td>
<td>OMMP-PORT GABES</td>
<td>Abri de voiture</td>
<td>Tôle</td>
<td>150</td>
</tr>
</tbody>
</table>

Total (Kg): 526750

Ministère de l’Intérieur et de Développement locale

<table>
<thead>
<tr>
<th>GOUVERNORAT</th>
<th>ADMINISTRATION</th>
<th>BATIMENT</th>
<th>TYPE</th>
<th>QUANTITÉ (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beja</td>
<td>Munip Beja</td>
<td>marché de gros</td>
<td>Tôle</td>
<td>1800</td>
</tr>
<tr>
<td>Munip Beja</td>
<td>marché aux bastiaux</td>
<td>Tôle</td>
<td>4000</td>
<td>100000</td>
</tr>
<tr>
<td>Munip Beja</td>
<td>marché el mzara</td>
<td>Tôle</td>
<td>1000</td>
<td>2500</td>
</tr>
<tr>
<td>Munip Beja</td>
<td>parc municipal</td>
<td>Tôle</td>
<td>5000</td>
<td>1250</td>
</tr>
<tr>
<td>Munip Nefza</td>
<td>centre ville</td>
<td>Tôle</td>
<td>5000</td>
<td>12500</td>
</tr>
<tr>
<td>Munip Zahret medien</td>
<td>prés du stade municipal</td>
<td>Tôle</td>
<td>5000</td>
<td>12500</td>
</tr>
<tr>
<td>Munip beja</td>
<td>marché de gros</td>
<td>Tôle</td>
<td>1800</td>
<td>45000</td>
</tr>
<tr>
<td>Munip beja</td>
<td>marché aux bastiaux</td>
<td>Tôle</td>
<td>4000</td>
<td>100000</td>
</tr>
<tr>
<td>Munip beja</td>
<td>marché el mzara</td>
<td>Tôle</td>
<td>1000</td>
<td>2500</td>
</tr>
<tr>
<td>Munip beja</td>
<td>parc municipal</td>
<td>Tôle</td>
<td>5000</td>
<td>1250</td>
</tr>
<tr>
<td>Munip nefza</td>
<td>centre ville</td>
<td>Tôle</td>
<td>5000</td>
<td>12500</td>
</tr>
</tbody>
</table>
Synthèse de l’étude sur les usages de l’amiante et la gestion des déchets amiantés en Tunisie

Ministère de la santé publique

<table>
<thead>
<tr>
<th>GOUVERNORAT</th>
<th>ADMINISTRATION</th>
<th>BATIMENT</th>
<th>TYPE</th>
<th>QUANTITE</th>
<th>QUANTITÉ (Kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nabeul</td>
<td>Hopital regional Menzel Temim</td>
<td>Parking de voiture</td>
<td>Tôle</td>
<td>160</td>
<td>4000</td>
</tr>
<tr>
<td></td>
<td>Hopital regional Menzel Temim</td>
<td>Parking de voiture</td>
<td>Tôle</td>
<td>160</td>
<td>4000</td>
</tr>
<tr>
<td></td>
<td>Hopital regional hammamet</td>
<td>canalisation</td>
<td>Conduite</td>
<td>84</td>
<td>16800</td>
</tr>
<tr>
<td></td>
<td>Hopital regional manzel bouzelfa</td>
<td>canalisation</td>
<td>Conduite</td>
<td>42</td>
<td>8400</td>
</tr>
<tr>
<td></td>
<td>Parking</td>
<td>parking</td>
<td>Tôle</td>
<td>220</td>
<td>5500</td>
</tr>
<tr>
<td></td>
<td>Hopital regional korba</td>
<td>canalisation</td>
<td>Conduite</td>
<td>22</td>
<td>4400</td>
</tr>
<tr>
<td></td>
<td>Hopital regional Nabeul</td>
<td>Parking de voiture</td>
<td>Tôle</td>
<td>250</td>
<td>6250</td>
</tr>
</tbody>
</table>

Total (Kg)

1897400
Synthèse de l’étude sur les usages de l’amiante et la gestion des déchets amiantés en Tunisie DGEQV-2013

Le récapitulatif des quantités par ministère est comme suit :

<table>
<thead>
<tr>
<th>Ministère</th>
<th>Quantité (Tonne)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ministère de l’Éducation et de l’Enseignement</td>
<td>522,598</td>
</tr>
<tr>
<td>Ministère de l’Agriculture</td>
<td>1982,100</td>
</tr>
<tr>
<td>Ministère de l’Equipement et de l’Environnement</td>
<td>18,650</td>
</tr>
<tr>
<td>Ministère de transport</td>
<td>526,750</td>
</tr>
<tr>
<td>Ministère de l’Intérieur et de Développement locale</td>
<td>1897,400</td>
</tr>
<tr>
<td>Ministère de la santé publique</td>
<td>688,750</td>
</tr>
<tr>
<td>Total (tonne)</td>
<td>5 637</td>
</tr>
</tbody>
</table>

3.4.2 **Quantités des conduites en amiante ciment par consommateur**

D’après les résultats de l’étude de 2008, on récapitule les quantités suivantes par organisme :

Cas de la SONEDE

<table>
<thead>
<tr>
<th>Destination</th>
<th>Linéaire total (km)</th>
<th>Quantités annuelles dégagées en déchets (en ml)</th>
<th>Stockage actuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direction régionale centre(1)</td>
<td>6.445</td>
<td>1.485</td>
<td>1.179</td>
</tr>
<tr>
<td>Direction régionale nord(2)</td>
<td>5.378</td>
<td>3.260</td>
<td>3.117</td>
</tr>
<tr>
<td>Direction régionale sud 3</td>
<td>8.325</td>
<td>1880</td>
<td>2794</td>
</tr>
<tr>
<td>Direction régionale du Grand Tunis</td>
<td>4.852</td>
<td>2.275</td>
<td>1.810</td>
</tr>
<tr>
<td>Total Directions Régionales</td>
<td>25.000</td>
<td>9000</td>
<td>8900</td>
</tr>
</tbody>
</table>
Synthèse de l’étude sur les usages de l’amiante et la gestion des déchets amiantés en Tunisie

DGEQV-2013

Cas des CRDA’s

<table>
<thead>
<tr>
<th>Gouvernorat</th>
<th>Réseaux d’irrigation (km)</th>
<th>Réseaux d’eau potable (Km)</th>
<th>Stock disponible (ml)</th>
<th>Linéaire des déchets produits (km/an)</th>
<th>Destination des déchets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ariana</td>
<td>180</td>
<td></td>
<td>200</td>
<td>0,2</td>
<td>Parc du CRDA</td>
</tr>
<tr>
<td>Nabeul</td>
<td>700</td>
<td>465</td>
<td>7310</td>
<td>0,4</td>
<td></td>
</tr>
<tr>
<td>Kasserine</td>
<td>290</td>
<td>119</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kef</td>
<td>146</td>
<td>39</td>
<td>715</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sousse</td>
<td>374</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tozeur</td>
<td>630</td>
<td>10</td>
<td>7435</td>
<td>1</td>
<td>Stockés au parc du CRDA et Fournis bénévolement aux agricultures</td>
</tr>
<tr>
<td>Monastir</td>
<td>270</td>
<td></td>
<td>1400</td>
<td></td>
<td>Parc du CRDA</td>
</tr>
<tr>
<td>Manouba</td>
<td>49,5</td>
<td></td>
<td></td>
<td>0</td>
<td>Néant</td>
</tr>
<tr>
<td>Béja</td>
<td>269,057</td>
<td>40,2</td>
<td>10655</td>
<td></td>
<td>Parc du CRDA</td>
</tr>
<tr>
<td>Kairouan</td>
<td>350,2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kébili</td>
<td>1000</td>
<td>1000</td>
<td>1000</td>
<td>10</td>
<td>Parc du CRDA</td>
</tr>
<tr>
<td>Bizerte</td>
<td>409,5</td>
<td>33,95</td>
<td>7523</td>
<td>1,015</td>
<td>Parc du CRDA</td>
</tr>
<tr>
<td>Gafsa</td>
<td>222,342</td>
<td>284,135</td>
<td>7755</td>
<td></td>
<td>Parc du CRDA</td>
</tr>
<tr>
<td>Zaghouan</td>
<td>109,285</td>
<td>76,952</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Médenine</td>
<td>26,416</td>
<td>62,198</td>
<td>1457</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sidi Bouzid</td>
<td>149,23</td>
<td>792,803</td>
<td>1000</td>
<td>14,923</td>
<td>Parc du CRDA</td>
</tr>
<tr>
<td>Ben Arous</td>
<td>150</td>
<td></td>
<td>1500</td>
<td>0,15</td>
<td>Parc du CRDA</td>
</tr>
<tr>
<td>Mahdia</td>
<td>221,75</td>
<td>5,08</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gabes</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tataouine</td>
<td>40,12</td>
<td>102,56</td>
<td>1100</td>
<td>0,11</td>
<td></td>
</tr>
<tr>
<td>Sfax</td>
<td>240,89</td>
<td>53,12</td>
<td>1200</td>
<td>0,12</td>
<td></td>
</tr>
<tr>
<td>Jendouba</td>
<td>163</td>
<td>36</td>
<td>900</td>
<td>0,9</td>
<td></td>
</tr>
<tr>
<td>Siliana</td>
<td>132</td>
<td>41</td>
<td>850</td>
<td>0,085</td>
<td></td>
</tr>
<tr>
<td>Total (Km)</td>
<td>6123,29</td>
<td>2084,046</td>
<td>52 000</td>
<td>28,093</td>
<td></td>
</tr>
</tbody>
</table>
ONAS (réseau exploité)

<table>
<thead>
<tr>
<th>Département</th>
<th>Gouvernorat</th>
<th>Arrondissement</th>
<th>Réseau Exploité En (ml)</th>
<th>Réseau En AC En (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grand Tunis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ariana</td>
<td></td>
<td></td>
<td>261 800</td>
<td>55 859</td>
</tr>
<tr>
<td>Borj Louzir</td>
<td></td>
<td></td>
<td>375 907</td>
<td>80 181</td>
</tr>
<tr>
<td>Ettdhamen</td>
<td></td>
<td></td>
<td>233 928</td>
<td>49 897</td>
</tr>
<tr>
<td>Ben Arous</td>
<td></td>
<td></td>
<td>246 305</td>
<td>68 076</td>
</tr>
<tr>
<td>Hammam Lif</td>
<td></td>
<td></td>
<td>454 025</td>
<td>125 488</td>
</tr>
<tr>
<td>Mourouj</td>
<td></td>
<td></td>
<td>459 540</td>
<td>127 012</td>
</tr>
<tr>
<td>Manouba</td>
<td></td>
<td></td>
<td>277 900</td>
<td>59 276</td>
</tr>
<tr>
<td>Tebourba</td>
<td></td>
<td></td>
<td>158 061</td>
<td>33 714</td>
</tr>
<tr>
<td>Menzah</td>
<td></td>
<td></td>
<td>267 602</td>
<td>72 084</td>
</tr>
<tr>
<td>Tunis Nord</td>
<td></td>
<td></td>
<td>546 620</td>
<td>147 570</td>
</tr>
<tr>
<td>Tunis Ouest</td>
<td></td>
<td></td>
<td>499 574</td>
<td>134 570</td>
</tr>
<tr>
<td>Tunis Sud</td>
<td></td>
<td></td>
<td>288 863</td>
<td>77 811</td>
</tr>
<tr>
<td>Tunis Ville</td>
<td></td>
<td></td>
<td>386 529</td>
<td>104 119</td>
</tr>
<tr>
<td>Total Grand Tunis</td>
<td></td>
<td></td>
<td>4 456 734</td>
<td>1 135 330</td>
</tr>
<tr>
<td>Nord</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Béja</td>
<td></td>
<td></td>
<td>180 351</td>
<td>21 101</td>
</tr>
<tr>
<td>Mjez el Bab</td>
<td></td>
<td></td>
<td>146 392</td>
<td>17 128</td>
</tr>
<tr>
<td>Bizerte</td>
<td></td>
<td></td>
<td>452 056</td>
<td>63 957</td>
</tr>
<tr>
<td>Menzel Bourguiba</td>
<td></td>
<td></td>
<td>229 945</td>
<td>32 533</td>
</tr>
<tr>
<td>Jendouba</td>
<td></td>
<td></td>
<td>317 589</td>
<td>45 415</td>
</tr>
<tr>
<td>Kef</td>
<td></td>
<td></td>
<td>253 260</td>
<td>36 216</td>
</tr>
<tr>
<td>Grombalia</td>
<td></td>
<td></td>
<td>376 811</td>
<td>53 884</td>
</tr>
<tr>
<td>Hammamet</td>
<td></td>
<td></td>
<td>228 265</td>
<td>32 642</td>
</tr>
<tr>
<td>Kelibia</td>
<td></td>
<td></td>
<td>283 008</td>
<td>40 470</td>
</tr>
<tr>
<td>Nabeul</td>
<td></td>
<td></td>
<td>419 537</td>
<td>59 994</td>
</tr>
<tr>
<td>Siliana</td>
<td></td>
<td></td>
<td>174 834</td>
<td>25 001</td>
</tr>
<tr>
<td>Zaghouan</td>
<td></td>
<td></td>
<td>148 319</td>
<td>21 210</td>
</tr>
<tr>
<td>Total Nord</td>
<td></td>
<td></td>
<td>3 210 367</td>
<td>449 551</td>
</tr>
<tr>
<td>Centre</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kairouan</td>
<td></td>
<td></td>
<td>320 042</td>
<td>37 445</td>
</tr>
<tr>
<td>Kasserine</td>
<td></td>
<td></td>
<td>197 707</td>
<td>23 132</td>
</tr>
<tr>
<td>El Jem</td>
<td></td>
<td></td>
<td>68 515</td>
<td>8 016</td>
</tr>
<tr>
<td>Mahdia</td>
<td></td>
<td></td>
<td>214 738</td>
<td>25 124</td>
</tr>
<tr>
<td>Jemmel</td>
<td></td>
<td></td>
<td>230 719</td>
<td>26 994</td>
</tr>
<tr>
<td>Ksar Helal</td>
<td></td>
<td></td>
<td>242 401</td>
<td>28 361</td>
</tr>
<tr>
<td>Moknine</td>
<td></td>
<td></td>
<td>192 492</td>
<td>22 522</td>
</tr>
<tr>
<td>Monastir</td>
<td></td>
<td></td>
<td>365 618</td>
<td>42 777</td>
</tr>
<tr>
<td>Sidi Bouzid</td>
<td></td>
<td></td>
<td>130 857</td>
<td>15 310</td>
</tr>
<tr>
<td>Msaken</td>
<td></td>
<td></td>
<td>169 120</td>
<td>27 397</td>
</tr>
</tbody>
</table>
3.4.3 Estimation des quantités de déchets d’amiante et d’amiante ciment

Les informations en cours d’enquête et l’examen de l’état des lieux des bâtiments recelant des produits surtout sous forme d’amiante ciment, peuvent être résumées comme suit :

- L’inventaire et l’examen dans le cadre de cette étude, des bâtiments surtout publics, à fortes concentration d’occupants et de visteurs, permettent d’estimer la quantité réelle de déchets en amiante et amiante ciment à un total de 6000 tonnes (y compris les tôles en amiante).
- Les quantités de déchets résiduels dans les trois usines fabriquant de produits en amiate ciment, sont aussi considérables et concentrés dans les limites desdites usines, ce qui
constitue un cas relativement préoccupant et qui nécessite un suivi et une intervention au court et moyen termes. Ces quantités sont estimées à 400 tonnes de déchets dans les trois usines. À cette quantité, il faut ajouter également le stock d’amiante en place à l’usine El Mawassir, évalué à 250 tonnes. D’après enquête, ce stock pourrait être vendu et réexporté dans le cadre du programme de la reconversion définitive de cette usine prévu pour la fin 2013.

- Parmi les organismes gros consommateurs de produits en amiante ciment, l’ONAS, la SONEDE et les CRDAs disposent de grandes quantités de conduites, mais aussi de rebus de conduites en amiante ciment et déchets. D’après les informations recueillies auprès des instances concernées, les estimations de déchets produits sur 50 ans, approximatives (1960-2010), en plus de consuites en stocks, sont données dans le tableau suivant.

D’après ce tableau, le linéaire de réseau est trop important pour représenter une quantité énorme de déchets en amiante ciment à prendre en compte au long terme, lorsque tous ces réseaux seront remplacés par des produits de substitution. La quantité totale de ces conduites parfois enterrées, est approximativement de 3 500 000 tonnes, et l’on serait amené à ne pas penser à la déterrer tout au moins partiellement, pensant au coût énorme de mise en décharge de produits dangereux de ces matériaux.
Synthèse de l’étude sur les usages de l’amiante et la gestion des déchets amiantés en Tunisie
DGEQV-2013

Tableau 3-2. Récapitulatif des déchets et des produits en amiante ciment à prévoir à différentes échéances pour les organismes gros consommateurs d’amiante ciment

<table>
<thead>
<tr>
<th>Longueur du Réseau</th>
<th>Déchets annuels</th>
<th>Déchets produits en 10 ans</th>
<th>Stocks (AC)</th>
<th>Déchets à court terme (disponible actuellement et prévu dans les 5 à 10 prochaines années)</th>
<th>Déchets moyen et long termes (dans 10 à 50 ans et plus)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>en km</td>
<td>Ton.</td>
<td>km/an</td>
<td>Ton/an</td>
<td>Ton</td>
</tr>
<tr>
<td>SONEDE</td>
<td>25000</td>
<td>2500000</td>
<td>9</td>
<td>900</td>
<td>9000</td>
</tr>
<tr>
<td>MINISTERE DE L’AGRICULTURE ET DES RESSOURCES HYDRAULIQUES (CRDAs, GR)</td>
<td>8284</td>
<td>828400</td>
<td>28</td>
<td>2800</td>
<td>28000</td>
</tr>
<tr>
<td>ONAS</td>
<td>2373,84</td>
<td>237384</td>
<td>-</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>TOTAL DE DECHETS A PREVOIR</td>
<td>80,9</td>
<td>8090</td>
<td>45 090</td>
<td>3 520 694</td>
<td></td>
</tr>
</tbody>
</table>

Actuellement sur le territoire Tunisien, il existe environ 16 377 tonnes de déchets amiantés (conduites en stock + bâtiments public et privés + les 3 usines).

Evolution des déchets en Amiante ciment sur les dix prochaines années

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Conduite (ONAS, CRDA et SONEDE)</td>
<td>8090<sup>1</sup></td>
<td>7400</td>
<td>3700</td>
<td>3700</td>
<td>3700</td>
<td>3700</td>
<td>3700</td>
<td>3700</td>
<td>3700</td>
<td>3700</td>
<td>45 090</td>
</tr>
<tr>
<td>Bâtiments Publics</td>
<td>1137<sup>2</sup></td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>500</td>
<td>5 637</td>
</tr>
<tr>
<td>Bâtiments Privés</td>
<td>200</td>
<td>2 000</td>
</tr>
<tr>
<td>CIAMIT, MAWASSIR et SICOAC</td>
<td>650</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>650</td>
</tr>
<tr>
<td>Total</td>
<td>10077</td>
<td>8100</td>
<td>4400</td>
<td>4400</td>
<td>4400</td>
<td>4400</td>
<td>4400</td>
<td>4400</td>
<td>4400</td>
<td>4400</td>
<td>53 377</td>
</tr>
</tbody>
</table>

¹ Il s’agit des quantités existentes des conduites AC en stock pour les 3 organismes. En 2016 on rajoute la quantité des déchets produits en 2015 à celle de 2016

² Il s’agit des quantités des déchets amiantés à éliminer en urgence au niveau des bâtiments identifiés à risque moyen lors de la campagne d’analyses
En ce qui concerne l’évaluation quantitative, sachant que la densité moyenne de l’amiante est proche de celle du sable (2,65), nous avons estimé qu’un mètre linéaire moyen d’un tube en amiante ciment peut peser 100 kg ; partant du fait que les diamètres de consuites sont très variables, de φ75 à φ2000, voire parfois même plus.

L’estimation des quantités de déchets provenant des stocks actuels dans les parcs des organismes gros consommateurs d’amiante ciment, et des déchets et rebus produits par ces organismes sur une période de 10 ans, s’élève à 45090 tonnes, ce qui est considérable. Ce sont ici des déchets qui doivent être traités au court terme.

Les quantités de produits à base d’amiante qui devront être traités et éliminés au moyen et long terme sont de loin les plus importants au plan quantité. Ainsi, environ millions de tonnes de déchets et de rebus en amiante ciment constituent le devenir au cours des quatre prochaines décennies de l’amiante ciment surtout des réseaux et équipements publics nationaux, et en partie des utilitaires bâtiments.

3.4.4 Récapitulatif

L’estimation des quantités réelles de déchets en amianté selon l’échéance de leur production, peut être récapitulée de la manière suivante :

Tableau 3-3. Récapitulatif des estimants de déchets d’amiante et d’amiante-ciment, produits à court, moyen et long termes à l’échelle du Pays.

<table>
<thead>
<tr>
<th>Localisation du produit</th>
<th>Déchets à Court Terme en Tonnes</th>
<th>Déchets à Moyen et Long Termes en Tonnes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bâtiments inventoriés (tôle+conduites)</td>
<td>5 637</td>
<td>0</td>
</tr>
<tr>
<td>Bâtiments privés</td>
<td>2 000</td>
<td>0</td>
</tr>
<tr>
<td>Déchets d’usines</td>
<td>650</td>
<td>0</td>
</tr>
<tr>
<td>Organismes gros consommateurs d’amiante ciment</td>
<td>45 090</td>
<td>3 520 694</td>
</tr>
<tr>
<td>TOTAL DE DECHETS</td>
<td>53 377</td>
<td>3 520 694</td>
</tr>
</tbody>
</table>

Il est clair que les quantités énormes de déchets d’amiante-ciment qui seront produits au court, moyen et long terme, incite à une solution urgente pour assurer la mise de ces produits dans une décharge de produits dangereux.

Pour le cas des privés, les quantités qui sont utilisées (tôles de couverture dans les hangars et les fermes agricoles, calorifugeage et flocage dans les cliniques et établissements hôteliers, quelques immeubles et écoles privé, les produits commercialisés dans les industries de peintures, d’étanchiété et les pièces mécaniques) ne sont pas incluses dans cet inventaire qui n’a considéré que les établissements publics. En l’absence d’une conscience du danger de l’amiante sur la santé, les privés ne sont pas encore près pour coopérer sur ce sujet et fournir les informations nécessaires pour notre inventaire. Mais, selon l’expérience des responsables dans certaines administrations en contact direct avec les privés sur les questions liées à l’hygiène des milieux et l’inspection des établissements privés (ANCSEP, ANPE, DHMPE, ANGed, ...), on a pu estimer la quantité à 30% des quantités présentes dans les établissements étatique. Tout calcul fait, la quantité des produits amiantés dans le secteur privé s’élève à environ 2000 tonnes de produits et déchets contenant l’amiante.

3.4.5 Gestion actuelle des déchets en amianté ciment

Notons à ce stade, que nos investigations indiquent que si les produits en stock sont bien identifiés et peuvent donc être acheminés vers une décharge destinée à cette fin, pour y être éliminés, l’histoire et la préservation de déchets déjà produits en cours de décennies lors d’opérations de remplacement, sont beaucoup plus incertaines.

En effet, la prise de conscience quant aux dangers de l’amiante date des années 1990s, et il n’est pas évident que ce type de déchets aient été conservés et suivis avant cette période. Ceci relève du fait même que ce produit et ces produits strictement dangereux, avaient longtemps été considérés comme des
dégâts banals. Il n’est donc pas exclu qu’ils aient été mis en décharge de déchets ménagers ou industriels, ou réutilisés à des fins diverses. Dans le cadre des enquêtes que nous avons conduites, les informations ont été pratiquement infructueuses.

En ce qui concerne l’entretien des déchets et surtout des stocks de tuyauteries en amiante ciment, l’exemple du stock décrit plus haut dans l’espace du district de l’ONAS est de loin le plus parlant. Les piles de tuyaux exposés à l’air libre, au gré des intempéries, dans un espace accessible à monsieur tout le monde, semble émaner du fait que ce type de produits, même s’ils sont dangereux, demeurent considérés, non sans une certaine “nonchalance”, comme des produits banals.

Dans le cas de réseaux publics, en particulier ceux de la SONDE, et dans le cas d’utilitaires de nombreux bâtiments, nous avons constaté l’application de badigeonnages sur des conduites, et parfois même sur des tôles en amiante ciment. Ce type d’opération permet sûrement de stabiliser l’amiante et de contrecarrer son éparpillement néfaste.

Enfin, en ce qui concerne les stocks de déchets d’amiante, aucune mesure n’a été prise pour les cas visités, pour prévenir le danger du fléau amianté. Le stockage et l’entretien de ces déchets semble demeurer totalement problématique, et encore mieux leur manipulation et surtout leur élimination dans une décharge de produits dangereux, relèvent d’un débat appelant à un effort d’échelle nationale.

3.4.6 Produits utilitaires et biens amiantés, autres que ceux en amiante ciment

L’amiante a été utilisé pour une panoplie d’applications et pour la fabrication d’une grande variété de produits autres que les tuyauteries et tôles en amiante-ciment (chimie de synthèse, constructions navales, sidérurgie, bâtiments, isolation, calorifugeage, revêtements, produits de friction, courroies de transmission, ...). Dans le cas précis de la Tunisie, la demande en amianté a augmenté rapidement de 2 tonnes en 1960, à 7297 tonnes en 1995, période à laquelle l’amiante est passé presque soudainement, du produit banal monopolisant le marché, à un produit toxique et dangereux, qui est à bannir de la manière la plus stricte. Un contrôle de tous les produits d’importation de l’amiante et des produits à base d’amiante, a été instauré en 1996 par la DGCCI (Direction Générale du Commerce et de la Concurrence Industrielle, en Tunisie), assuré en tandem avec les Services Douaniers et les Autorités Portuaires. C’est pourquoi les importations de l’amiante ont chuté rapidement de 7297 tonnes en 1995 à environ 1020 tonnes en 2003. Depuis seule l’usine El Mawassir est demeuré importatrice d’amiante jusqu’à l’horizon 2013, date butoir de sa conversion définitive, et de son ralliement à l’œuvre d’éradication de l’amiante.

Par ailleurs, la Tunisie étant liée à des partenaires de la rive Nord de la Méditerranée qui ont déjà totalement banni l’usage de l’amiante, elle a donc vécu une mutation totale, d’une période d’importation de produits amiantés (autres produits que les tôles et tuyauteries en amiante ciment), à une nouvelle période d’importation de biens totalement dépourvus d’amiante. Par exemple, l’amiante des matériaux de friction (garnitures de freins, disques d’embrayages, etc.), a d’abord été substitué par la serpentine (homologue magnésien de l’argile kaolin, produit de couleur vert-jaune), puis par des matériaux divers, dont des céramiques synthétiques, des fibres de verres, des fibres métalliques, divers alliages de métaux, etc. Les faux plafonds et les matériaux de revêtements à base d’amiante dans le bâtiment, ont été substitués par le gypse ou par d’autres produits inoffensifs pour la santé et pour l’environnement. L’usage de l’amiante chrysotile tissé en courroies de transmission (moulins, motopompes de puits en agriculture), a été abandonné.

En récapitulatif, la reconversion de l’importation de produits et de biens à base d’amiante, à des produits qui en sont totalement dépourvus, même si elle a été progressive dans la période de 1995 à 2005, elle a sûrement été bien réussie, pratiquement sans incidences économiques sensibles à l’échelle nationale. Mais c’est particulièrement dans le domaine de l’environnement et de la santé que l’impact a été le plus positif ; il doit donc ici encore être renforcé. C’est la raison d’être même de cette étude.
4 Comparaison aux normes et limites d'exposition internationales

4.1 Normes limites fixées pour l’air ambiant et pour l’exposition à l’amiante

En respect de la législation Européenne de protection des ouvriers en ce qui les risques d’exposition à l’amiante (Directive 83/477/CEE ; comme amendé par la Directive 2003/18/CEE), les employeurs doivent s’assurer qu’aucun ouvriers ni personnel ne s’expose à une concentration de l’amiante dans l’aire supérieure à 0.1 fibre par cm3, représentant la moyenne pondérée de huit (8) heures de travail (Article 8). Ces Directives Européennes ont été adoptées par la législation des Etats Membres. La même limite est appliquée aux USA.

De plus, une autre limite critique est définie par les législations nationales des Pays Européens; il s’agit de la limite de propreté de l’air qui est utilisée comme partie pour décider de la conformité des procédures applicables pour l’élimination de l’amiante, et de l’autorisation de réoccupation de l’aire concerné après cette élimination.

Dans la plupart des Pays Membres, la limite de propreté de l’air est de 0.010 fibres par cm3 (Grande Bretagne HSG 248 & MDHS 39/4, Grèce PD 212/2006,...). La loi mentionne aussi que les mesures doivent être effectuées en lumière polarisée/analysée et par un microscope à contraste de phase. L’un des Pays Membres exige que les concentrations doivent être inférieures à 0.005 fibres par cm3, comme test pour autoriser la réoccupation d’un bâtiment, et la mesure doit être effectuée par un Microscope Electronique à Balayage (France, INRS EDB15). Dans d’autres Pays Membres, les mesures de l’amiante dans l’air pour la certification de propreté doivent aussi être effectuées par le Microscope Electronique à Balayage (Allemagne, Italie). Aux Etats Unis, la limite de propreté de l’air (EPA, safe occupation level) est de 0.01 fibres par cm3 (40 CFR 763.90 (i) (5) et 29 CFR 1926.110(g)).

Généralement, en accord avec la pratique internationale la plus commune, la limite considérée pour la propreté de l’air en matière d’amiante, est aussi basse que 0.010 fibres par cm3.

4.2 Applications: comparaison aux investigations des lieux d’étude

En considérant les résultats des analyses d’échantillons d’air dans tous les bâtiments (en dehors des Usines d’El Mawassir-Bir Mcherga et CIAMIT-Bizerte), la pollution par des fibres d’amiante n’a pas été détectée dans l’air. En Tunisie, aucune limite n’est encore admise. Dès le moment que toutes les concentrations sont inférieures à la limite admise pour la propreté de l’air de 0.010 fibres par cm3 comme expliqué précédemment (Directives Européennes et Dispositions internationales), l’ambiance dans ces bâtiments peut être considérée comme propre, et donc sans risques pour les occupants.

Ces faibles concentrations (inférieures à la limite de détection de l’appareillage et la limite de propreté de l’air) montrent qu’il n’existe pas de risque immédiat pour la santé des occupants des bâtiments visités, du moins dans l’état dans lequel se trouvent aujourd’hui les matériaux amiantés y existants, et en l’absence de causes de dégradations possibles de ces matériaux pouvant survenir.

Cette situation se présente pour la majorité des installations et bâtiments visités démunis de matériaux amiantés friables (tôles et conduites en amianté ciment, carreaux de vinyle amianté du sol) Ces matériaux non friables livrent difficilement leurs fibres d’amiante dans l’air. Néanmoins, toute intervention pouvant provoquer la détérioration de ces matériaux peut provoquer la contamination de l’air en particulier à l’intérieur des bâtiments et locaux, surtout ceux qui manquent d’une ventilation adéquate.

En ce qui concerne les concentrations de fibres d’amiante mesurées dans les usines de fabrication de produits à base d’amiante (El Mawassir avec 0,014 à 0,015 fibres/cm3 ; CIAMIT : 0,013 à 0,017 fibres/cm3), la situation était tout à fait prévisible, étant donné la forte contamination de ces sites par de l’amiante friable et des poussières en émanant. De plus, ces n’ont pas encore été décontaminés de manière adéquate et proprement, en procédant à des méthodes hautement standard comme de pratique selon les meilleures pratiques dans ce domaine, à une échelle internationale, en réponse à la Législation Européenne par exemple. Les concentrations mesurées dans l’air, bien que supérieures à la limite de propreté définie pour l’air ambiant (0.010 fibres par cm3), elles demeurent inférieures à la valeur limite définie pour l’exposition des personnes aux fibres d’amiante (0.1 fibres par cm3 (8h TWA)).
5 Analyse du risque lié à l’amiante

5.1 Méthodologie d’évaluation du risque

Tous les matériaux amiantés identifiés dans les bâtiments sont introduits dans un système de notation prioritaire pour l’évaluation des risques. Ce système permettra au client de planifier toutes les mesures d’élimination et de correction.

La mise en œuvre du système permettra:

- le maintien d’un environnement de travail sécurisé en considérant tous les matériaux amiantés identifiés,
- une mise en conformité avec la législation européenne en matière de sécurité et d’hygiène.

Une cote de priorité est attribuée à chaque élément amianté identifié sur les sites contrôlés. Cette cotation est basée sur une évaluation combinée de l’état, de la friabilité et de la localisation de l’élément amianté. De manière analytique, chaque matériau amianté est classé comme suit:

5.1.1 Evaluation du risque des matériaux

Tableau 5.1. Procédure d’évaluation du risque lié aux matériaux identifiés contenant de l’amiante

<table>
<thead>
<tr>
<th>Nature du produit</th>
<th>1</th>
<th>Composites renforcés en amiante (ou débris de produits) : plastics, résines, mastics, feutres pour toiture, carreaux de sol en vinyle, peintures semi-rigides, finitions décoratives, ciment amianté, etc.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>Panneaux isolants amiantés, panneaux d’usine, autres panneaux d’isolation de faible densité, textiles amiantés, joints d’étanchéité, cordes et tissus en textile amianté, papier amianté</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Isolation thermique (ex. conduite et chaudière calorifique), flocages d’amiante (projection d’amiante), amianté en vrac, matelas d’amiante, emballage amianté</td>
</tr>
<tr>
<td>Etendue des dommages/détérioration</td>
<td>0</td>
<td>Bon état: absence de dommages visibles</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Dégât faible: quelques égratignures ou marques en surface, planches ou carreaux avec bords cassés, , etc.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Dégât moyen: rupture importante de matériaux ou plusieurs petites zones comportant des matériaux endommagés révélant des fibres d’amiante en vrac</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Dommage important ou délaminage de matériaux, flocage et isolation thermique, résidus d’amiante visible</td>
</tr>
<tr>
<td>Traitement de surface</td>
<td>0</td>
<td>Matériaux composites comportant de l’amiante : plastics renforcés, résines, carreaux de vinyle</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Flocage de joint et d’isolation, AIB (avec face exposée peinte ou encapsulée), tôles en ciment amianté, etc.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>AIB non scellé, flocage et calorifique encapsulé</td>
</tr>
</tbody>
</table>
5.1.2 Outils d’évaluation du risque matériaux

Les risques liés à la présence de matériaux contenant de l’amiante dans les lieux inspectés, sont classés comme précisé dans le tableau suivant.

Tableau 5.2. Degrés de risques liés à la présence d’amiante dans les matériaux de construction inspectés

<table>
<thead>
<tr>
<th>CATÉGORIE DE RISQUE</th>
<th>DESCRIPTION</th>
<th>SCORE ATTRIBUÉ</th>
</tr>
</thead>
</table>
| Elevé | Urgence des travaux d’intervention
Procéder au retrait immédiat / encapsulation et ou à des travaux de décontamination en adoptant les conditions de travail appropriés de l’amiante à la nature et aux dangers du produit | 10 -12 |
| Moyen | Mettre en œuvre un plan de gestion approprié
En raison de la probabilité de dommages ou de détérioration du matériau contenant de l’amiante, projeter et organiser l’enlèvement futur ou l’encapsulation par ordre de priorité en adoptant les procédures et conditions de travail de l’amiante les plus appropriées. | 7-9 |
| faible | Mettre en œuvre un plan de gestion: appropriée
Mettre en place des signaux ou des étiquettes attirant l’attention sur la présence d’amiante quand c’est possible, avec la mention entretenir avec soin et en conséquence, ne pas déranger ou détruire. | 5-6 |
| Très faible et mineur | Mettre en œuvre un plan de gestion: appropriée
Mettre en place des signaux ou des étiquettes attirant l’attention sur la présence d’amiante quand c’est possible, avec la mention entretenir avec soin et en conséquence, ne pas déranger ou détruire. | 4 ou moins |

5.1.2.1 Risques sur les sites des Usines de transformation de l’amiante

5.1.2.1.1 Evaluation du risqué El Mawassir

En usant de la méthodologie d’évaluation du risque lié à l’amiante (HSG264 / Grande Bretagne), la situation du site d’El Mawassir peut être spécifiée comme suit selon le degré du risque.

- Les espaces où des fibres d’amiante dispersées ont été détectées dans l’air (0,013 à 0,017 fibres/cm³), comme dans le bâtiment principal et sur les aires extérieures (où le l’amiante chrysotile a été détectée dans les échantillons de sols) sont caractérisés comme des lieux à risque élevé.
- Les espaces où seuls des matériaux non friables (produits en amianté ciment) ont été détectés, relèvent de la catégorie de lieux à risque faible (si lesdits matériaux sont bien entretenus et conservés) ou de risque moyen (si ces matériaux se retrouvent dans un état hautement endommagé ; par exemple à l’état de débris d’amiante ciment).

5.1.2.1.2 Evaluation du risque SICOAC

Au regard de la méthodologie d’évaluation du risque (HSG264 UK), la situation du site peut être caractérisée comme suit :
• Dans les aires où des fibres d’amiante ont été retrouvées dispersés, comme dans le dépôt de sacs de matériel PVC et sur les aires extérieures où de l’amiante chrysotile a été détectée dans des échantillons de sols (boues de bassins de décantation, et dépôts de vidange de ces bassins) sont caractérisées comme des zones à haut risque.

• Les endroits où seuls des produits en amianté ciment non friables ont été reconnus, sont classés à risque faible (si ces matériaux sont conservés dans de bonnes conditions) ou à risque moyen (au cas où ces matériaux se retrouvent endommagés, ou subissent un bris pour la formation de débris en amianté ciment).

5.1.2.1.3 Evaluation du risque CIAMIT

En respect de la méthodologie d’évaluation du risque lié à l’amiante (HSG264, UK), la situation du site de CIAMIT à Bizerte peut être caractérisée comme suit.

Les aires où des fibres friables d’amiante ont été détectées, en particulier dans le bâtiment principal et dans les aires externes (échantillons de sols à chrysotile), sont considérées comme des zones à haut risque.

Les aires où des matériaux non friable (fragments de matériaux en amianté ciment et si ces matériaux ne sont pas brisés ou dégradés) peuvent être classées comme zones à risque faible, ou à risque moyen (si les matériaux amiantés sont endommagés).

5.1.2.2 Situation en cas d’intervention importante sur les lieux

Il est important de noter que les catégories de risque mentionnées plus haut et les recommandations y afférentes, sont applicables pour des matériaux contenant de l’amiante dans l’état présent, spécifié pour chaque catégorie. Chaque recommandation pour chaque catégorie est proposée avec la présomption que l’état du matériau concerné n’a pas été changé en quoi que ce soit depuis la campagne d’inspection.

Toutefois, en cas de déplacement, de modifications importantes ou de travaux de réfection des locaux qui peuvent conduire à des modifications importantes quant à l’état de conservation du matériau amianté, le schémas d’aménagement et d’intervention proposés doivent être revus en conséquence, en respect du changement possible dans ces conditions de conservation ; voire même en ce qui concerne le changement dans la catégorie du risque à encourir après ce type d’intervention.

En cas d’intervention ou de déplacement d’un matériau contenant de l’amiante, ou d’un matériau du type subissant une perturbation importants, les contrôles et procédures techniques spécifiques s’imposent comme stipulé par les textes en vigueur.

5.1.3 Applications

Compte tenu des critères par catégorie et des scores proposés ci-haut, nous avons classés les matériaux rencontrés en cours d’inspection, selon la catégorie du risque en relevant. Sont aussi décrites les localisations et les conditions de conservation des matériaux amiantés concernés, et proposées dans le cas de chaque matériel, des solutions pour la meilleure protection contre, l’amiante ou son élimination, et donc la maintenance des produits amiantés. Ainsi :

• Aucun matériau inspecté et identifié amianté, n’a été classe dans la catégorie à risque élevé.

• Quarante deux sites (42) ont été identifiés, contenant des matériaux à amianté dans divers lieux inspectés, heureusement formés pour la plupart d’amiante ciment donc à amianté relativement stabilisée, ont été classés parmi la catégorie à risque moyen. Sur quarante deux (42) cas identifiés, nous proposons une élimination des produits amiantés suite à l’élaboration d’un plan d’aménagement et d’intervention selon les procédures les plus adéquates, dans vingt trois (23) cas, soit dans 55% de l’ensemble, surtout lorsqu’il s’agit de déchets de produits à amianté, de joints, de produits d’isolation ou de tôles risquant le bris et leur amianté facilement mobilisable.

• Pour cent trente six sites (136) inspectés et révélant de l’amiante à l’analyse, ou celle-ci figure comme amianté-ciment, relativement stable, constitué surtout des conduites en gouttières de drainage ou d’eaux pluviales, des toits et des toitures diverse sen tôles, des revêtements de sols, mais aussi deux cas de cheminée et deux cas de mur claustra. Pour ces produits, nous proposons...
la maintenance périodique entre autre par application de peinture adéquate, et dans les conditions les meilleures procéder à leur enlèvement et leur élimination définitive, pour parer à tout risque pouvant en émaner au long terme, surtout en cas de réfection des lieux ou de leur démolition.

5.1.4 Interdiction de l’usage de l’amiante et incidences économiques au long terme

Comme nous l’avons déjà mentionné pour les organismes gros consommateurs d’amiante ciment, et compte tenu de l’expérience des principaux opérateurs (SONEDE, ONAS, CRDAs), la longévité des produits en amiante ciment, en particulier les conduites constituant les infrastructures et les équipements de base du Pays, est de l’ordre de 30 à 40 ans.

- **Pour le cas de la SONEDE**, suite à un entretien avec la direction de distribution et l’exploitation des réseaux, il s’est avéré qu’il existe actuellement des problèmes de financement pour le renouvellement des réseau. En effet, la SONEDE est actuellement au stade de l’évolution vers le PEHD selon sa stratégie de moyen et long terme, soit le remplacement des 25000 km du réseau existant (conduites amiante ciment) à raison de 2% par an. La mise en œuvre de la stratégie est bolquée à cause des faibles moyens financiers. Dans ce cadre, la SONEDE a écrit au ministère de l’industrie pour demander qu’on autorise à MAWASSIR la production de 100 km de conduite amiante ciment jusqu’à 2015, le temps qu’elle retrouve les moyens financiers pour passer au PEHD. Cette demande a été refusée et on a exigé l’interdiction de l’utilisation des produits amiantés et les remplacer par le PEHD ou le GRP pipes.

La SONEDE avoue que le remplacement du réseau est bénéfique que ce soit de point de vue environnementale et économique mais reste dépendante des financements et la situation économique et financière de l’établissement. Des efforts sont actuellement faits pour trouver des sources de financement pour cet aspect.

On rappelle que la rentabilité de l’opération de remplacement des canalisations AC par des canalisations PEHD, indépendamment des aspects économiques, elle est essentiellement justifiée par ses externalités positives sur la santé des usagers. La monétarisaton de ces externalités à travers une valorisation des effets néfastes sur la santé pouvant être évités par l’usage des canalisations PEHD permettra a fortiori de justifier du point de vue de la collectivité le remplacement des canalisations AC.

- **Pour le cas de l’ONAS**, le remplacement des conduites amiante-ciment a été imposé par le non rentabilité de ce type de conduit vu que la durée de vie de la conduite ne dépasse pas les 15 ans à cause de l’effet des émissions H₃S. Depuis des années, l’ONAS commençait le remplacement des conduites amiante ciment par des conduites PEHD et actuellement par le PVR. Vu la rentabilité des produits de remplacement et l’échelonnage de ce remplacement sur plusieurs années, l’impact économique n’est pas ressenti par cet organisme.

Toute action d’interdiction de l’usage de l’amiante et de ses produits pose donc le problème du remplacement des conduites actuelles des infrastructures et équipements par d’autres ne contenant pas d’amiante. Cette action certainement bénéfique pour l’environnement et pour la santé, implique cependant obligatoirement l’élimination et la mise en décharge des quantités d’amiante ciment dans tous les secteurs et dans tous les gouvernorats sur période qui peut ainsi s’échelonner de nos jours jusqu’à l’horizon 2040, avec un pic d’activité aux alentours de l’année 2030.

par des produits qui en sont exempts est déjà entamée, pratiquement sans incidences économiques majeures.

Au plan de la gestion des rebus et déchets d’amiante qui vont en s’accumulant au long terme que ce soit pour les sites des usines concernés, pour les immeubles bâtis, ou pour les infrastructures et équipements gérés par les partenaires gros consommateurs de produits en amianté ciment, la nécessité de mise en décharge contrôlée de quantités considérables d’amiante ciment, pose un certain nombre de problèmes.

- **Pour les usines concernées**, les rebus et déchets d’amiante et amianté ciment, suite aux programmes de décontamination, devraient de préférence être enterrés dans des terrains de décharges choisis sur les sites respectifs de ces usines, et l’espace de ces décharges occupés par des aires de repos, de parkings et de divers projets de constructions, même légères. En effet, nos investigations sur le site de CIAMIT ont montré (1) que ce site demeure contaminé et comportant des bâtiments et aires à risque élevé ; (2) et que les déchets dans la décharge contrôlée déjà construite sur le site, avec une cote moyenne de l’ordre de 1,5 par rapport au TN, et malgré un recouvrement par du terrain végétal, demeurent totalement exposés au risque de déterrement et donc d’exposition à l’environnement à des produits dangereux. Il en découle à l’avenir un entretien trop couteux de cette décharge; c’est pourquoi nous suggérons qu’au moins celle-ci, en plus des bâtiments et des espaces environnants doivent être revisités et remis définitivement en état hors de nuire.

- **Pour les rebus et déchets qui seront issus des immeubles bâtis** et surtout des conduites d’amiante ciment des équipements et infrastructures, les quantités sont considérables et communes à tous les gouvernorats. Il est difficile de penser à leur enlèvement et à leur regroupement dans une seule décharge à l’échelle du Pays, notamment pour des risques en cours de transport, opération par ailleurs trop coûteuse. Au cas d’un enterrément par région, ceci risque aussi de déboucher sur un problème sérieux, celui de la multiplication possible de décharges contrôlées à l’échelle du Pays, et donc d’un suivi et d’un entretien au long terme qui apparaîtrait plus coûteux. Il est donc clair dans ce cas que le choix entre l’une ou l’autre de ces deux solutions majeures, doit concilier entre les incidences économiques et environnementales importantes à escompter à l’échelle nationale ; sans oublier certaines incidences sociales, une décharge de produits dangereux constitue toujours un aménagement peu apprécié et difficilement acceptable par le concitoyen.

Enfin il est judicieux d’attirer l’attention sur le fait que l’élimination en décharge contrôlé surtout de conduites en amianté ciment et rebus en provenance, pose le problème non seulement de la quantité à éliminer, mais aussi celui du volume énorme. Il s’agit en effet de conduites vides qu’il est déconseillé de détruire et de terrasser avant enterrément en décharge. Ceci peut déboucher sur un ‘facteur de foisonnement’ énorme, dépassant souvent 100% ; d’où la nécessité d’un espace considérable de décharge tant au plan de l’exécution de l’aménagement, qu’au plan du suivi, entretien et contrôle réguliers. C’est pourquoi, en Europe le choix d’espaces morts souterrains comme les mines abandonnées souterraines a été de choix pour l’élimination non seulement de l’amiante, mais aussi pour bien d’autres déchets dangereux.
<table>
<thead>
<tr>
<th>No.</th>
<th>Site</th>
<th>Building</th>
<th>Etage</th>
<th>Compartiment</th>
<th>Element / Component</th>
<th>Material Description</th>
<th>Action Necessary</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Commissariat Régional de l'Education - Ariana</td>
<td>Dépôt Auto</td>
<td>0</td>
<td>Dépôt Auto</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>2</td>
<td>Hôpital Abderrahmen Mami - Ariana</td>
<td>Chaufferie</td>
<td>0</td>
<td>Chaufferie</td>
<td>Brûleur</td>
<td>Joint (grand)</td>
<td>Elimination</td>
</tr>
<tr>
<td>3</td>
<td>Hôpital Abderrahmen Mami - Ariana</td>
<td>PAV2</td>
<td>terrasse</td>
<td>Terrasse</td>
<td>Conduit</td>
<td>Déchets d'amiante ciment</td>
<td>Elimination</td>
</tr>
<tr>
<td>4</td>
<td>Hôpital Abderrahmen Mami - Ariana</td>
<td>Mosquée</td>
<td>terrasse</td>
<td>Terrasse</td>
<td>Conduit</td>
<td>Déchets d'amiante ciment</td>
<td>Elimination</td>
</tr>
<tr>
<td>5</td>
<td>Ecole Primaire Saline - Ben Arous</td>
<td>Kheireddine Bacha</td>
<td>0</td>
<td>Kheireddine Bacha</td>
<td>Conduit (gouttière)</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>6</td>
<td>Ecole Primaire Saline - Ben Arous</td>
<td>Bâtiment administratif</td>
<td>0</td>
<td>Bâtiment administratif</td>
<td>Conduit (gouttière)</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>7</td>
<td>Ecole Primaire Ibn Sina - Ben Arous</td>
<td>Derrière salles de classes 5, 6, 7, 8</td>
<td>0</td>
<td>Derrière salles de classes 5, 6, 7, 8</td>
<td>Conduit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>8</td>
<td>Ecole Primaire Ibn Sina - Ben Arous</td>
<td>En face des salles de classes 5, 6, 7, 8</td>
<td>0</td>
<td>Derrière salles de classes 5, 6, 7, 8</td>
<td>Conduit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>9</td>
<td>Ecole Primaire Ibn Sina - Ben Arous</td>
<td>Derrière bloc sanitaire "toilette"</td>
<td>0</td>
<td>Derrière bloc sanitaire "toilette"</td>
<td>Conduit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>10</td>
<td>Ecole Primaire Khaznadar Ezzahra - Ben Arous</td>
<td>Surface extérieure</td>
<td>0</td>
<td>Surface extérieure</td>
<td>Sol</td>
<td>Amiante ciment déchets</td>
<td>Elimination</td>
</tr>
<tr>
<td>11</td>
<td>Ecole Primaire Khaznadar Ezzahra - Ben Arous</td>
<td>Surface extérieure</td>
<td>0</td>
<td>Surface extérieure</td>
<td>Sol</td>
<td>Amiante ciment déchets</td>
<td>Elimination</td>
</tr>
<tr>
<td>12</td>
<td>Agence des Ports et des installations de pêche (APIP) - Gabes</td>
<td>Surface extérieure</td>
<td>0</td>
<td>Surface extérieure</td>
<td>Sol</td>
<td>Déchets (amiante ciment)</td>
<td>Elimination</td>
</tr>
<tr>
<td>13</td>
<td>Agence des Ports et des installations de pêche (APIP) - Gabes</td>
<td>Dépôt de stockage</td>
<td>0</td>
<td>Dépôt de stockage</td>
<td>Lot de tôle enlève d'un garage</td>
<td>Tôle en amiante de ciment</td>
<td>Elimination</td>
</tr>
<tr>
<td>14</td>
<td>Agence des Ports et des installations de pêche (APIP) - Gabes</td>
<td>Surface extérieure</td>
<td>0</td>
<td>Surface extérieure</td>
<td>Sol</td>
<td>Déchets (amiante ciment)</td>
<td>Elimination</td>
</tr>
<tr>
<td>15</td>
<td>Parc de la Commune de Zarat - Gabes</td>
<td>Surface extérieure</td>
<td>0</td>
<td>Surface extérieure</td>
<td>Sol</td>
<td>Déchets ciment (amiante)</td>
<td>Elimination</td>
</tr>
<tr>
<td>16</td>
<td>Ecole Préparatoire Technique - Gafsa</td>
<td>Ecole Préparatoire Technique</td>
<td>0</td>
<td>Près du poste transf</td>
<td>Sol</td>
<td>Déchets Ciment (Amiante)</td>
<td>Elimination</td>
</tr>
<tr>
<td>17</td>
<td>Ecole Préparatoire Technique - Ecole Préparatoire</td>
<td>Local Ferraillage de</td>
<td>0</td>
<td>Local Ferraillage de</td>
<td>Sol</td>
<td>Déchets (Amiante)</td>
<td>Elimination</td>
</tr>
<tr>
<td>Gafsa</td>
<td>Technique</td>
<td>l’école</td>
<td>Ciment</td>
<td>Action</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-----------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Hôpital Circonscription Sbeitla - Kasserine</td>
<td>Administration Hôpital</td>
<td>0</td>
<td>Local chaudière</td>
<td>Conduite</td>
<td>Amiante Ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>19</td>
<td>Hôpital Circonscription Sbeitla - Kasserine</td>
<td>Administration Hôpital</td>
<td>-1</td>
<td>Dépôt (ancien chaudière)</td>
<td>Conduite</td>
<td>Amiante Ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>20</td>
<td>Commissariat Régional de l’Education - Kebili</td>
<td>CRE Kebili</td>
<td>0</td>
<td>Arrière administration</td>
<td>Sol</td>
<td>Déchets (Amiante Ciment)</td>
<td>Elimination</td>
</tr>
<tr>
<td>21</td>
<td>Commissariat Régional de l’Education - Mahdia</td>
<td>Surface extérieure</td>
<td>0</td>
<td>Surface extérieure</td>
<td>Sol</td>
<td>Déchets (amiante ciment)</td>
<td>Elimination</td>
</tr>
<tr>
<td>22</td>
<td>Commissariat Régional de l’Education - Mahdia</td>
<td>Mur de clôture</td>
<td>0</td>
<td>Déchets de tole sur mur de clôture</td>
<td>Sol</td>
<td>Déchets (amiante ciment)</td>
<td>Elimination</td>
</tr>
<tr>
<td>23</td>
<td>Clinique de Chirurgie Dentaire - Monastir</td>
<td>Derrière salle d’attente du service PPA</td>
<td>0</td>
<td>Devant l’office derrière salle d’attente du service PPA</td>
<td>Sol</td>
<td>Déchets (amiante ciment)</td>
<td>Elimination</td>
</tr>
<tr>
<td>24</td>
<td>Ecole Primaire El Houda Moknine - Monastir</td>
<td>Salle de classes de 14 a 17</td>
<td>0</td>
<td>Derrière salle de classes de 14-17</td>
<td>Conduite</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>25</td>
<td>Lycée Hedi Khafacha - Monastir</td>
<td>Cour derrière salle de professeur dépôt divers</td>
<td>0</td>
<td>Surface extérieure derrière salle de professeur</td>
<td>Sol</td>
<td>Déchets (amiante ciment)</td>
<td>Elimination</td>
</tr>
<tr>
<td>26</td>
<td>Ecole Préparatoire Ibn el Haitem - Sfax</td>
<td>Surface extérieure</td>
<td>0</td>
<td>Surface extérieure près des vestiaires</td>
<td>Sol</td>
<td>Déchets (amiante ciment)</td>
<td>Elimination</td>
</tr>
<tr>
<td>27</td>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Logement économe</td>
<td>0</td>
<td>Abri -1 - a l’entrée gauche</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>28</td>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Logement économe</td>
<td>0</td>
<td>Abri -2-a l’entrée gauche</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>29</td>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Logement surveillant général d’internat</td>
<td>0</td>
<td>Logement surveillant général d’internat garage -1-</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>30</td>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Logement surveillant général d’internat</td>
<td>0</td>
<td>Abri extérieur n°1</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>31</td>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Logement surveillant général d’internat</td>
<td>0</td>
<td>Abri extérieur n°2</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>32</td>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Logement surveillant général d’internat</td>
<td>0</td>
<td>Abri extérieur n°3</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>33</td>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Logement directeur du lycée</td>
<td>0</td>
<td>Abri n°1 entrée gauche</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>34</td>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Logement directeur du lycée</td>
<td>0</td>
<td>Abri n°2 garage voiture</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>35</td>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Logement directeur du lycée</td>
<td>0</td>
<td>Abri n° 3 entrée</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
</tbody>
</table>
Etude sur les usages de l’amiante et la gestion des déchets amiantés en Tunisie

DGEQV-2013

<table>
<thead>
<tr>
<th>Sfaxes</th>
<th>du lycée</th>
<th>gauche</th>
<th>exemple peinture) / Elimination</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Logement directeur du lycée 0</td>
<td>Abri n°4 entrée droite</td>
</tr>
<tr>
<td>37</td>
<td>Commissariat Régional de l'Education - Sidi Bouzid</td>
<td>Parking des voitures 0</td>
<td>Extérieur</td>
</tr>
<tr>
<td>38</td>
<td>Comissariat Régional de l'Education - Siliana</td>
<td>Parking 0</td>
<td>Parking</td>
</tr>
<tr>
<td>39</td>
<td>Usine Tecno Seals Tunisie - Sousse</td>
<td>Près du mur de clôture de l'usine 0</td>
<td>Surface extérieure</td>
</tr>
<tr>
<td>40</td>
<td>Dépôt TGM - Tunis</td>
<td>Dépôt TGM 0</td>
<td>Extérieur du bâtiment</td>
</tr>
<tr>
<td>41</td>
<td>Dépôt TGM - Tunis</td>
<td>Train A108</td>
<td>-</td>
</tr>
<tr>
<td>42</td>
<td>Raffinerie Tunisienne de soufre Jebel Jloul - Tunis</td>
<td>Surface extérieure 0</td>
<td>Surface extérieure</td>
</tr>
</tbody>
</table>
Tableau 5-4. Matériaux à risque faible à très faible, selon le lieu indiqué

<table>
<thead>
<tr>
<th>No</th>
<th>Site</th>
<th>Bâtiment</th>
<th>Étage</th>
<th>Aire/Chambre</th>
<th>Élément / Composant</th>
<th>Description Matériel</th>
<th>Action nécessaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Commissariat Régional de L'Education - Ariana</td>
<td>Dépôt Auto</td>
<td>0</td>
<td>Dépôt Auto</td>
<td>Conduit (gouttière)</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>2</td>
<td>Commissariat Régional de L'Education - Ariana</td>
<td>Dépôt meuble scolaire</td>
<td>0</td>
<td>Dépôt meuble scolaire</td>
<td>Conduit (gouttière)</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>3</td>
<td>Commissariat Régional de L'Education - Ariana</td>
<td>Dépôt électrique</td>
<td>0</td>
<td>Extérieure du bâtiment</td>
<td>Conduit (gouttière)</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>4</td>
<td>Commissariat Régional de L'Education - Ariana</td>
<td>Administration</td>
<td>0</td>
<td>Extérieure du bâtiment</td>
<td>Conduit (gouttière)</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>5</td>
<td>Hôpital Abderrahmen Mami - Ariana</td>
<td>Ancien Laboratoire</td>
<td>1</td>
<td>Ancien Laboratoire</td>
<td>Conduit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>6</td>
<td>Hôpital Abderrahmen Mami - Ariana</td>
<td>Ancien bâtiment administratif</td>
<td>0-3</td>
<td>Ancien bâtiment administratif</td>
<td>Conduit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>7</td>
<td>Hôpital Abderrahmen Mami - Ariana</td>
<td>Ancien Laboratoire</td>
<td>0</td>
<td>Ancien Laboratoire</td>
<td>Conduit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>8</td>
<td>Hôpital Abderrahmen Mami - Ariana</td>
<td>Ancien Laboratoire</td>
<td>0</td>
<td>Ancien Laboratoire</td>
<td>Conduit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>9</td>
<td>Hôpital Abderrahmen Mami - Ariana</td>
<td>Ancienne Lingerie</td>
<td>-1</td>
<td>Ancienne Lingerie</td>
<td>Conduit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>10</td>
<td>Hôpital Abderrahmen Mami - Ariana</td>
<td>Hospitalisation PAV2</td>
<td>0</td>
<td>Unité de recherche</td>
<td>Sol</td>
<td>Carreaux de sol en vinyle</td>
<td>Couverture (linoléum) / Elimination</td>
</tr>
<tr>
<td>11</td>
<td>Hôpital Abderrahmen Mami - Ariana</td>
<td>Radiologie</td>
<td>terrasse</td>
<td>Terrasse</td>
<td>Cheminée</td>
<td>Amiante-ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>12</td>
<td>Hôpital Abderrahmen Mami - Ariana</td>
<td>Radiologie</td>
<td>terrasse</td>
<td>Terrasse</td>
<td>Cheminée</td>
<td>Amiante-ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>13</td>
<td>Agence des Ports et des installations de pêche (APIP) - Gabes</td>
<td>Atelier de réparation somatrasm</td>
<td>0</td>
<td>Atelier de réparation</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>14</td>
<td>Agence des Ports et des installations de pêche (APIP) - Gabes</td>
<td>Atelier de réparation somatrasm</td>
<td>0</td>
<td>Atelier de réparation</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>15</td>
<td>Agence des Ports et des installations de pêche (APIP) - Gabes</td>
<td>S N D P chambre de citerne</td>
<td>0</td>
<td>Chambre de chaudière-1</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>16</td>
<td>Agence des Ports et des installations de pêche (APIP) - Gabes</td>
<td>S N D P chambre de citerne</td>
<td>0</td>
<td>Chambre de chaudière -2</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>17</td>
<td>Ecole Primaire Ghannouch Est Gabes</td>
<td>Abri de matériels</td>
<td>0</td>
<td>Abri de matériels</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>Numéro</td>
<td>École / Primaire</td>
<td>Type / Usage</td>
<td>Carteau</td>
<td>Matériau</td>
<td>Conduite / Matériau</td>
<td>Primo / Exemple</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
<td>-------------</td>
<td>--------</td>
<td>---------</td>
<td>---------------------</td>
<td>---------------</td>
<td>-------------</td>
</tr>
<tr>
<td>18</td>
<td>Ecole Primaire Cite El Mnara Gabes Sud Gabes</td>
<td>Atelier et dépôt</td>
<td>0</td>
<td></td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>19</td>
<td>Ecole Primaire Cite El Mnara Gabes Sud Gabes</td>
<td>Salles de classes</td>
<td>0</td>
<td>Dernière les salles de classes</td>
<td>Conduite</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>20</td>
<td>Ecole Primaire Cite El Mnara Gabes Sud Gabes</td>
<td>Salles de classes</td>
<td>0</td>
<td>Dernière les salles de classes</td>
<td>Conduite</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>21</td>
<td>Ecole Primaire 2 Mars 1934 Matmata Nouvelle - Gabes</td>
<td>Logement directeur</td>
<td>0</td>
<td></td>
<td>Conduite</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>22</td>
<td>Ecole Primaire 2 Mars 1934 Matmata Nouvelle - Gabes</td>
<td>Ancien atelier dépôt de matériel</td>
<td>0</td>
<td>Ancien atelier et dépôt de matériel éducatif</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>23</td>
<td>Ecole Primaire Ghannouch Ouest Gabes</td>
<td>Atelier et garage</td>
<td>0</td>
<td>Atelier et dépôt de matériel</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>24</td>
<td>Parc de la Commune de Zarat - Gabes</td>
<td>Abri de matériels et d'engins</td>
<td>0</td>
<td>Abri de matériels et d'engins</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>25</td>
<td>Ecole Préparatoire Technique - Gafsa</td>
<td>Ecole Préparatoire Technique</td>
<td>0</td>
<td>Atelier & Magasin</td>
<td>Toiture</td>
<td>Amiante Ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>26</td>
<td>Ecole Préparatoire Technique - Gafsa</td>
<td>Ecole Préparatoire Technique</td>
<td>0</td>
<td>Salle des professeurs</td>
<td>Conduites</td>
<td>Amiante Ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>27</td>
<td>Ecole primaire Bouomrane 1 El Guettar - Gafsa</td>
<td>Ecole primaire</td>
<td>0</td>
<td>Arrière logement directeur</td>
<td>Conduite</td>
<td>Amiante Ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>28</td>
<td>Hôpital Circonscription Sbeiltla - Kasserine</td>
<td>Administration Hôpital</td>
<td>0</td>
<td>Pharmacie</td>
<td>Conduite</td>
<td>Amiante Ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>29</td>
<td>Hôpital Circonscription Sbeiltla - Kasserine</td>
<td>Administration Hôpital</td>
<td>0</td>
<td>Logement directeur</td>
<td>Conduite</td>
<td>Amiante Ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>30</td>
<td>Commissariat Régional de l'Education - Kebili</td>
<td>CRE Kébili</td>
<td>0</td>
<td>Magasin de stockage</td>
<td>Toiture</td>
<td>Amiante Ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>31</td>
<td>Marche de gros - Kebili</td>
<td>Marché de gros Kébili</td>
<td>0</td>
<td>Local de vente N°2</td>
<td>Toiture</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>32</td>
<td>Commissariat Régional de l'Education - Mahdia</td>
<td>Abri extérieur</td>
<td>1</td>
<td>Abri de 2 anciennes citeres</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>33</td>
<td>Commissariat Régional de l'Education - Mahdia</td>
<td>Abri extérieur de matériel</td>
<td>0</td>
<td>Abri de matériels, entrée gauche du commissariat</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>34</td>
<td>Commissariat Régional de l'Education - Mahdia</td>
<td>Couloir d'Archive 2ème Etage</td>
<td>2</td>
<td>Couloir d'Archive en 2ème Etage</td>
<td>Conduite</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>35</td>
<td>Commissariat Régional de l'Education - Mahdia</td>
<td>Couloir d'Archive 2ème Etage</td>
<td>2</td>
<td>Toilette a la fin du Couloir d'Archive en 2ème Etage</td>
<td>Conduite</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>36</td>
<td>Ecole Préparatoire Hkaima - Mahdia</td>
<td>Abri 1</td>
<td>0</td>
<td>Abri de voitures n° 1</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>37</td>
<td>Ecole Préparatoire Hkaima - Mahdia</td>
<td>Abri 2</td>
<td>0</td>
<td>Abri de voitures n° 2</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td>No.</td>
<td>École Préparatoire Technique - Mahdia</td>
<td>Atelier</td>
<td>Salle de mécanique auto</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------------</td>
<td>---------</td>
<td>------------------------</td>
<td>-----</td>
<td>----------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Atelier</td>
<td>0</td>
<td>Salle de construction métallique</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Atelier</td>
<td>0</td>
<td>Salle de menuiserie</td>
<td>Conduite</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Atelier</td>
<td>0</td>
<td>Magasin & dépôt de la direction régional</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Atelier</td>
<td>1</td>
<td>Dépôt atelier</td>
<td>Conduite</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Atelier</td>
<td>0</td>
<td>Logement du directeur</td>
<td>Conduite</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Atelier</td>
<td>0</td>
<td>Logement du directeur</td>
<td>Conduite</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>Atelier</td>
<td>1</td>
<td>Cour devant la salle n°4</td>
<td>Conduite</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>Atelier</td>
<td>0</td>
<td>Cour devant les salles °5 6 7 8</td>
<td>Conduite</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>Atelier</td>
<td>0</td>
<td>Cour devant salles des institueurs</td>
<td>Conduite</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>Atelier</td>
<td>0</td>
<td>Cour devant le bloc sanitaire</td>
<td>Conduite</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>Atelier</td>
<td>0</td>
<td>Cour devant la salle °5 6 7 8</td>
<td>Conduite</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Atelier</td>
<td>0</td>
<td>Cour devant salles °5 6 7 8</td>
<td>Conduite</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Atelier</td>
<td>0</td>
<td>Cour devant salles °5 6 7 8</td>
<td>Conduite</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Atelier</td>
<td>0</td>
<td>Cour devant salles °5 6 7 8</td>
<td>Conduite</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Atelier</td>
<td>0</td>
<td>Cour devant salles °5 6 7 8</td>
<td>Conduite</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Atelier</td>
<td>0</td>
<td>Cour devant salles °5 6 7 8</td>
<td>Conduite</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Atelier</td>
<td>0</td>
<td>Cour devant salles °5 6 7 8</td>
<td>Conduite</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Atelier</td>
<td>0</td>
<td>Cour devant salles °5 6 7 8</td>
<td>Conduite</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Atelier</td>
<td>0</td>
<td>Cour devant salles °5 6 7 8</td>
<td>Conduite</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Atelier</td>
<td>0</td>
<td>Cour devant salles °5 6 7 8</td>
<td>Conduite</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>N°</td>
<td>Localisation</td>
<td>Description</td>
<td>Zone</td>
<td>Type de matériel</td>
<td>Statut</td>
<td>Matériel et gestion amianté</td>
<td>Description détails</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------------------</td>
<td>--</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>58</td>
<td>Clinique de Chirurgie Dentaire -</td>
<td>Administration et service PPA</td>
<td>0-1-2</td>
<td>Derrière l'administration et service PPA</td>
<td>Conduite</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td></td>
<td>Monastir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Clinique de Chirurgie Dentaire -</td>
<td>Abri extérieur de déchets de matériaux médicaux</td>
<td>0</td>
<td>Abri extérieur de déchets de matériaux médicaux</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td></td>
<td>Monastir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Clinique de Chirurgie Dentaire -</td>
<td>Derrière salle d'attente du service PPA</td>
<td>0</td>
<td>Derrière salle d'attente du service PPA</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td></td>
<td>Monastir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Clinique de Chirurgie Dentaire -</td>
<td>Devant l'office derrière salle d'attente du service PPA</td>
<td>0, 1, 2</td>
<td>Devant l'office derrière salle d'attente du service PPA</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td></td>
<td>Monastir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Clinique de Chirurgie Dentaire -</td>
<td>Derrière l'administration en face faculté de science</td>
<td>0, 1, 2</td>
<td>Derrière l'administration en face faculté de science</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td></td>
<td>Monastir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Ecole Primaire El Houda Moknine -</td>
<td>Salle de classes de 1 à 12</td>
<td>0</td>
<td>Derrière salle de classes de 1-12</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td></td>
<td>Monastir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Ecole Primaire El Houda Moknine -</td>
<td>Abri d'eleves</td>
<td>0</td>
<td>Abri d'eleves à l'entrée de l'école</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td></td>
<td>Monastir</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Lycée Hedi Khafacha - Monastir</td>
<td>Abri de voitures</td>
<td>0</td>
<td>Abri de voitures</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Lycée Hedi Khafacha - Monastir</td>
<td>Abri de voitures</td>
<td>0</td>
<td>Abri de voitures</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Lycée Hedi Khafacha - Monastir</td>
<td>Economat</td>
<td>0</td>
<td>Economat</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Lycée Hedi Khafacha - Monastir</td>
<td>Salle de gymnastique</td>
<td>0, 1</td>
<td>Salle de gymnastique</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Lycée Hedi Khafacha - Monastir</td>
<td>Salle de classe</td>
<td>0</td>
<td>Devant salle de classe n° 18</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Lycée Hedi Khafacha - Monastir</td>
<td>Salle de classes</td>
<td>0</td>
<td>Devant salle de classe n° 24, 16, 17</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Lycée Hedi Khafacha - Monastir</td>
<td>Couloir d'entre salle de sport, vestiaires et terrains</td>
<td>0</td>
<td>Couloir d'entre salle de sport et terrains</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>Lycée Hedi Khafacha - Monastir</td>
<td>Vestiaires devant terrains de sport</td>
<td>0</td>
<td>Vestiaires devant terrains de sport</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>Lycée Hedi Khafacha - Monastir</td>
<td>Derrière salle de musique</td>
<td>0</td>
<td>Derrière salle de musique</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>Lycée Hedi Khafacha - Monastir</td>
<td>Derrière salle de professeur</td>
<td>0, 1, 2</td>
<td>Derrière salle de professeur</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Maintenance périodique (par exemple peinture) / Elimination</td>
</tr>
</tbody>
</table>

COMETE Engineering/PLINIOS SA
<table>
<thead>
<tr>
<th>Numéro</th>
<th>Emplacement</th>
<th>Description</th>
<th>Localisation</th>
<th>Type de matériau</th>
<th>Matériaux</th>
<th>Description supplémentaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>Lycée Hedi Khafacha - Monastir</td>
<td>Derrière salle de professeur</td>
<td>0, 1, 2</td>
<td>Derrière salle de professeur</td>
<td>Conduite</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>76</td>
<td>Lycée Hedi Khafacha - Monastir</td>
<td>Centre d'éducation</td>
<td>0, 1, 2</td>
<td>En face du terrain de volet ball</td>
<td>Conduite</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>77</td>
<td>Lycée Hedi Khafacha - Monastir</td>
<td>Salle d'histoire</td>
<td>0</td>
<td>Derrière salle d'histoire</td>
<td>Conduite</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>78</td>
<td>Lycée Hedi Khafacha - Monastir</td>
<td>Mur de clôture de l'économat</td>
<td>0</td>
<td>Mur de clôture de l'économat</td>
<td>Conduite</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>79</td>
<td>Ecole Préparatoire Bechir Kraief Mahres - Sfax</td>
<td>Abri de voitures</td>
<td>0</td>
<td>Abri de voitures</td>
<td>Toit</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>80</td>
<td>Ecole Préparatoire Bechir Kraief Mahres - Sfax</td>
<td>Salle de permanence</td>
<td>0</td>
<td>Salle de permanence</td>
<td>Conduite</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>81</td>
<td>Ecole Préparatoire Ibn el Haitem - Sfax</td>
<td>Logement du directeur</td>
<td>0</td>
<td>Logement du directeur</td>
<td>Conduite</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>82</td>
<td>Ecole Préparatoire Jbiniana - Sfax</td>
<td>Abri</td>
<td>0</td>
<td>Abri de voitures extérieur</td>
<td>Toit</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>83</td>
<td>Hôpital Régional de Jbiniana - Sfax</td>
<td>Logement du directeur</td>
<td>0</td>
<td>Logement du directeur</td>
<td>Conduite</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>84</td>
<td>Hôpital Régional de Jbiniana - Sfax</td>
<td>Abri</td>
<td>0</td>
<td>Dépôt de matériel ancien</td>
<td>Toit</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>85</td>
<td>Hôpital Régional de Jbiniana - Sfax</td>
<td>Abri</td>
<td>0</td>
<td>Dépôt de voitures anciennes</td>
<td>Toit</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>86</td>
<td>Hôpital Régional de Jbiniana - Sfax</td>
<td>Médecine générale</td>
<td>0</td>
<td>Bureaux médecins</td>
<td>Conduite</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>87</td>
<td>Hôpital Régional de Jbiniana - Sfax</td>
<td>Pharmacie</td>
<td>0</td>
<td>Pharmacie</td>
<td>Conduite</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>88</td>
<td>Hôpital Régional de Jbiniana - Sfax</td>
<td>Pharmacie</td>
<td>0</td>
<td>Pharmacie</td>
<td>Conduite</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>89</td>
<td>Hôpital Régional de Jbiniana - Sfax</td>
<td>Pharmacie</td>
<td>0</td>
<td>Pharmacie</td>
<td>Conduite</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>90</td>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Abri</td>
<td>0</td>
<td>Abri compteur de gaz et d'électricité</td>
<td>Toit</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>91</td>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Logement économique</td>
<td>0</td>
<td>Abri de voiture</td>
<td>Toit</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>92</td>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Logement économique</td>
<td>0</td>
<td>Abri de poulets</td>
<td>Toit</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>93</td>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Logement économique</td>
<td>0</td>
<td>Logement économique</td>
<td>Conduite</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>94</td>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Atelier et dépôt</td>
<td>0</td>
<td>Atelier et dépôt de matériel</td>
<td>Toit</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>95</td>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Abri - 1- dépôt de cuisine</td>
<td>0</td>
<td>Abri - 1- dépôt de cuisine</td>
<td>Toit</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>N°</td>
<td>Localisation</td>
<td>Description</td>
<td>Compteur 1</td>
<td>Compteur 2</td>
<td>Type de Toiture</td>
<td>Matériaux de Maintenance</td>
</tr>
<tr>
<td>----</td>
<td>--------------------------------------</td>
<td>---</td>
<td>------------</td>
<td>------------</td>
<td>----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>96</td>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Abri -2- dépôt de cuisine</td>
<td>0</td>
<td></td>
<td>Toit</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>97</td>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Logement surveillant général d'internat</td>
<td>0</td>
<td></td>
<td>Conduite</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>98</td>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Logement surveillant général d'internat</td>
<td>0</td>
<td></td>
<td>Toit</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>99</td>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Logement directeur du lycée</td>
<td>0</td>
<td></td>
<td>Toit</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>100</td>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Logement directeur du lycée</td>
<td>0</td>
<td></td>
<td>Logement du directeur</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>101</td>
<td>Commissariat Régional de l'Education - Sidi Bouzid</td>
<td>Parking des voitures</td>
<td>0</td>
<td>Parking des voitures</td>
<td>Toiture</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>102</td>
<td>Commissariat Régional de l'Education - Sidi Bouzid</td>
<td>Dépôt</td>
<td>0</td>
<td>Dépôt</td>
<td>Toiture</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>103</td>
<td>Commissariat Régional de l'Education - Sidi Bouzid</td>
<td>Administration</td>
<td>0</td>
<td>Extérieur</td>
<td>Conduite exterieur EP</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>104</td>
<td>Ecole Primaire Etaib Mhiri - Sidi Bouzid</td>
<td>Ecole primaire</td>
<td>0</td>
<td>Classe N°1, 2 et 3</td>
<td>Conduite</td>
<td>Amiante Ciment</td>
</tr>
<tr>
<td>105</td>
<td>Ecole Primaire Etaib Mhiri - Sidi Bouzid</td>
<td>Ecole primaire</td>
<td>0</td>
<td>Façade des Classes</td>
<td>Conduite</td>
<td>Amiante Ciment</td>
</tr>
<tr>
<td>106</td>
<td>Ecole Primaire Etaib Mhiri - Sidi Bouzid</td>
<td>Ecole primaire</td>
<td>0</td>
<td>Façade Classe N°7</td>
<td>Conduite</td>
<td>Amiante Ciment</td>
</tr>
<tr>
<td>107</td>
<td>Ecole Primaire Etaib Mhiri - Sidi Bouzid</td>
<td>Ecole primaire</td>
<td>0</td>
<td>Arrière Classe N°5, 6 ET 7</td>
<td>Conduite</td>
<td>Amiante Ciment</td>
</tr>
<tr>
<td>108</td>
<td>Ecole Primaire Etaib Mhiri - Sidi Bouzid</td>
<td>Ecole primaire</td>
<td>0</td>
<td>Arrière Classe N°8 ET 9</td>
<td>Conduite</td>
<td>Amiante Ciment</td>
</tr>
<tr>
<td>109</td>
<td>Ecole Primaire Etaib Mhiri - Sidi Bouzid</td>
<td>Ecole primaire</td>
<td>0</td>
<td>Arrière Classe N°8 ET 9</td>
<td>Conduite</td>
<td>Amiante Ciment</td>
</tr>
<tr>
<td>110</td>
<td>Ecole Primaire Etaib Mhiri - Sidi Bouzid</td>
<td>Ecole primaire</td>
<td>0</td>
<td>Arrière Classe N°13</td>
<td>Conduite</td>
<td>Amiante Ciment</td>
</tr>
<tr>
<td>111</td>
<td>Collège Rouhia - Siliana</td>
<td>Vestiaire</td>
<td>0</td>
<td>Vestiaires</td>
<td>Toiture</td>
<td>Amiante Ciment</td>
</tr>
<tr>
<td>112</td>
<td>Collège Rouhia - Siliana</td>
<td>Derrière classe n°13</td>
<td>0</td>
<td>Local vide</td>
<td>Toiture</td>
<td>Amiante Ciment</td>
</tr>
<tr>
<td>113</td>
<td>Commissariat Régional de l'Education - Siliana</td>
<td>Parking</td>
<td>0</td>
<td>Parking</td>
<td>Toiture</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>114</td>
<td>Commissariat Régional de l'Education - Siliana</td>
<td>Dépôt matériel</td>
<td>0</td>
<td>Dépôt matériel</td>
<td>Toiture</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>115</td>
<td>Ecole Primaire Knaies M'Saken - Sousse</td>
<td>Derrière salles de classes 12, 13</td>
<td>0</td>
<td>Derrière salles de classes 12, 13</td>
<td>Conduite</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>116</td>
<td>Ecole Primaire Knaies M'Saken - Sousse</td>
<td>Derrière salles de classes 1, 2, 3, 4, 5</td>
<td>0</td>
<td>Derrière salles de classes 1, 2, 3, 4, 5</td>
<td>Conduite</td>
<td>Amiante ciment</td>
</tr>
<tr>
<td>No.</td>
<td>Établissement</td>
<td>Zone d'intervention</td>
<td>Type d'intervention</td>
<td>Matériau</td>
<td>Description</td>
<td>État</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------------</td>
<td>--------------------</td>
<td>---------------------</td>
<td>----------</td>
<td>----------------------------</td>
<td>------</td>
</tr>
<tr>
<td>117</td>
<td>École Primaria Knaies M'Saken - Sousse</td>
<td>Abri pour élèves</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Primaire périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>École Primaria M'Saken - Sousse</td>
<td>Abri pour élèves</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Primaire périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>École Primaria M'Saken - Sousse</td>
<td>Abri pour robinets</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Primaire périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>École Primaria M'Saken - Sousse</td>
<td>Derrière salles de classes 1, 2, 3, 4</td>
<td>Conduite</td>
<td>Amiante ciment</td>
<td>Primaire périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>École Primaria M'Saken - Sousse</td>
<td>Devant salle de classe 4</td>
<td>Conduite</td>
<td>Amiante ciment</td>
<td>Primaire périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>École Primaria Boumhel 1 - Tunis</td>
<td>Logement de fonction directeur</td>
<td>Extérieur du bâtiment</td>
<td>Amiante ciment</td>
<td>Primaire périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>École Primaria Boumhel 1 - Tunis</td>
<td>École Primaire</td>
<td>Extérieur du bâtiment</td>
<td>Amiante ciment</td>
<td>Primaire périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>Institut Pasteur - Tunis</td>
<td>Dépôt</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Primaire périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>Institut Pasteur - Tunis</td>
<td>Module</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Primaire périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>Dépôt TGM - Tunis</td>
<td>Dépôt TGM</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Primaire périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>Dépôt TGM - Tunis</td>
<td>Chambre matériel femme de ménage</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Primaire périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>Dépôt TGM - Tunis</td>
<td>Vestiaire</td>
<td>Extérieur du bâtiment</td>
<td>Amiante ciment</td>
<td>Primaire périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>Dépôt TGM - Tunis</td>
<td>Chambre chaudeire</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Primaire périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>Dépôt TGM - Tunis</td>
<td>Loge gardien</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Primaire périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>Dépôt TGM - Tunis</td>
<td>Salle de formation</td>
<td>Extérieur du bâtiment</td>
<td>Amiante ciment</td>
<td>Primaire périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>132</td>
<td>Dépôt TGM - Tunis</td>
<td>Local exploitation</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Primaire périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>133</td>
<td>Dépôt TGM - Tunis</td>
<td>Local exploitation</td>
<td>Extérieur du bâtiment</td>
<td>Amiante ciment</td>
<td>Primaire périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td>Dépôt TGM - Tunis</td>
<td>Gestion d'économie de stock</td>
<td>Extérieur du bâtiment</td>
<td>Amiante ciment</td>
<td>Primaire périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td>Dépôt TGM - Tunis</td>
<td>Suite magasin</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Primaire périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>Dépôt TGM - Tunis</td>
<td>Service abonnement</td>
<td>Toit</td>
<td>Amiante ciment</td>
<td>Primaire périodique (par exemple peinture) / Elimination</td>
<td></td>
</tr>
</tbody>
</table>
6 Schémas de Gestion des Déchets Amiantés

6.1 Schémas de gestion des déchets d’amianté existants

Le meilleur schéma de gestion des produits et déchets d’amianté existants repose sur la meilleure reconnaissance des lieux, des quantités de déchets disponibles sur les sites concernés et le type de traitement et de suivi accordé à ces déchets à l’échelle du Pays. L’expérience vécue dans le cadre de ce projet, démontre qu’il est difficile de mettre la gestion de ce produit dangereux sous le seul compte et la seule responsabilité du Ministère chargé de l’Environnement et de ses proches collaborateurs. Malgré des tentatives d’enquêtes thématiques et bien planifiées et des contacts répétés par différents moyens directs et indirects, aucune réponse n’a été obtenue, surtout lorsqu’il s’agit de demander des informations sur les quantités de déchets, et d’identifier l’état de conservation et le devenir des produits et déchets en amianté, notamment auprés des organismes gros consommateurs de conduites contenant ce produit. Ceci provient du fait que les quantités de ce danger amianté qui a été inopinément et toujours considéré comme un produit et un déchet généré banal, n’ont pratiquement pas été disposés, suivis, planifiés, entretenus, déclarés, rejetés, etc., comme un produit à haut risque environnemental et sanitaire. Cette situation est donc tout simplement héritée.

La réussite du schéma de gestion des produits et déchets d’amianté existants tire profit de l’analyse de l’existant, de l’expérience des Pays avancés qui ont banni l’amianté, des meilleures techniques opérationnelles disponibles en la matière, et de l’application des textes de lois en vigueur en Tunisie qui ont déjà amorcé le cadre juridique nécessaire pour l’usage et la gestion environnementale des produits et déchets dangereux depuis leur site d’utilisation jusqu’au lieu définitif de mise en décharge de produits dangereux.

6.1.1 Préservation et manutention des déchets et de leurs décharges existantes

En Tunisie, les sources des déchets amiantés sont 5 :
- Les usines de transformations de l’amianté
- Les gros consommateurs des conduites amiantés
- Les bâtiments contenant dans certains endroits de l’amianté sous différentes formes
- Les produits à base d’amianté ou contenant des amiantes
- Les habitation usuelles

Chaque source ou producteur de déchets amiantés gère à sa façon et selon ces moyens parfois sans conscience de la problématique et les impacts néfastes sur la santé et l’environnement.

6.1.1.1 Cas des usines :

Compte tenu non seulement de la pollution avérée persistante des trois usines précédentes et de la fragilité de la solution de décharge in situ et apparente de CIAMIT, la solution qui vient à l’esprit repose :

- sur un certain nombre d’observations des sites précédents,
- sur le comportement des déchets d’amianté à l’état sec et à l’état humide, en précisant que ce danger est pratiquement annihilé sous humidification (ou humeération) tel que par aspersion d’eau, surtout en cours de manipulation des déchets à la récupération, au transport et à l’enfouissement,
- sur le fait que l’enterrement des déchets en profondeur permet non seulement de débarrasser définitivement les lieux de tous déchets de ce type et de leurs dangers, mais il permet aussi de récupérer le terrain de la décharge à exécuter avec sa valeur marchande réelle, l’amianté étant humidifié dans le sous-sol et donc pratiquement inerte, à condition qu’il ne soit pas excavé ou desenterré. Il rend aussi possible la réutilisation du terrain à des fins diverses : parkings, espace vert, et pourquoi pas comme terrain de construction industrielle, surtout en respectant les règles techniques de génie civil (constructions sur radier ou sur pieux) visant à occuper des terrains qui
seront déclarés définitivement viciés si l’on considère la présence d’amiante enseveli sans leur sous-sol.

- Sur le fait que la décharge sur place permet de sauver les frais de transport d’un produit dangereux et sur des distances énormes lorsqu’on imagine la solution de tout enfourir à la décharge de Jeradou. Évidemment, elle permet aussi de sauver les frais de mise en décharge ex-situ.

La solution la plus pratique nous paraît être la suivante :

1. Chaque site d’usine doit d’abord faire l’objet d’une Etude de Dépollution avec des termes de références solides où le pollueur concerné viendrait à déclarer tous ses déchets passés et actuels, mais aussi les déchets qui subsisteraient selon son activité, y compris après sa reconversion, ou la fermeture de l’usine et donc son démantèlement. Cette étude doit déboucher sur la solution la plus économique qui est surement l’enfouissement in situ. Ainsi, dans le cas de chaque site, le propriétaire doit choisir selon les quantités de déchets, le terrain nécessaire à excaver pour enterrer ses déchets, tout en précisant l’usage qu’il compte faire de ce terrain. C’est aussi à cette étude de préciser les techniques et le planning des travaux à exécuter pour la manipulation des déchets leur transport sur site, puis leur enfouissement définitif et leur recouvrement. Le but définitif est de proposer les options quant aux intentions futures du propriétaire en ce qui concerne le nouvel usage du site de la décharge.

2. Les déchets existants peuvent être manipulés. Nous avons montré que les décharges sauvages existantes sur les sites de SICOAC et d’El MAWASSIR couvrent plus d’un hectare chacune, le site de CIAMIT demeure aussi pollué et à haut risque y compris pour la décharge apparente construite en 2007. On peut ainsi facilement imaginer que les déchets soient écrasés au rouleau et transportés au fur et à mesure sous une aspersion continue d’eau. Dans ces conditions, l’amiante ne pourra pas se disperser sur les lieux des travaux depuis les décharges sauvages, jusqu’au lieu des décharges (=Centre d’Enfouissement Technique) qui peuvent être préparées au préalable, et éventuellement structurées en cellules (alvéoles) indépendantes successives.

3. En cours d’aspersion et de manipulation des déchets amiantés, l’eau de ruissèlement doit être récupérée dans des fosses creusées à même le sol et qui doivent par la suite être totalement condamnées, répertoriées sur les plans parcellaires et recouvertes de la même façon que les décharges nouvelles à construire.

4. Les décharges définitives (ou plus correctement CET) doivent être nivelées à-ras-le-sol avant leur couverture par les terrains eux-mêmes excavés par creusage des alvéoles, ou par un mélange plâtre-ciment (20%) dont la prise est très rapide et dont la rigidité permet de renforcer la portance du sol excavé et rempli de déchets dangereux.

5. Les décharges ainsi exécutées, totalement enterrées, doivent être répertoriées avec précision sur les plans parcellaires les concernant, et leurs usages ultérieurs dument déclarés auprès des organismes de contrôle concernés (Ministères, ANPE, ANGeD, etc.).

Dès lors, il devient parfaitement possible :

- De réussir un curage total de chaque site, de ses bâtiments, de ses sols, de ses espaces à déchets sauvages ;
- De réussir la réutilisation des bâtiments et des terrains ayant subi un curage bien étudié, bien organisé, bien suivi par qui de droit, et correctement déclaré pour tout usage ultérieur :
 - Comme terrain de parking, comme aire de récréation, de manutention ou de stockage de produits inoffensifs après reconversion,
- Comme espace vert,
- Comme terrain de construction en gardant bien à l’esprit que toute construction sur un terrain de centre d’enfouissement nécessite :
 - Un respect des règles communes des fondations en génie civil,
 - Un nivellement du terrain par accotement jusqu’à la côte zéro du projet qui devrait se situer au moins à 1,5m par rapport au niveau local NGT, à partir du top de la couverture de la décharge. Cette élévation du plancher de la construction est de fait imposée, le plus souvent par les exigences des cotes des réseaux VRD (ONAS, SONEDE, STEG, etc.).

La décharge existante à CIAMIT est gênante. En effet, d’une part, elle demeure à haut risque, elle engage un suivi et un entretien pratiquement sans fin, elle condamne la valeur du terrain, et elle s’ajoutera en termes d’espace à toute nécessité de curage et de remise en état du site CIAMIT pour sa revalorisation efficace. Deux solutions se présentent :
 - Cette décharge peut d’abord être murée en pourtour par un mur de soutènement adéquat, compactée au rouleau, puis recouverte par une couche bien nivelée d’asphalte ou d’un mélange plâtre-ciment (20%) à forte prise et à forte rigidité.
 - Cette décharge peut aussi être reprise sous aspersion d’eau et faire partie avec tous les produits de curage du site de l’usine et de ses sols, dans un nouveau CET in situ qui sera enterré, et nivelé à même le niveau local par rapport à NGT. Malgré, son coût apparaissant plus élevé que celui de la solution précédente, la seconde proposition adjoint la solution définitive pour la décharge existante à haut risque et qui engage surement des frais de suivi et d’entretien incalculables au long terme, à la remise en état définitive du site pour sa réutilisation comme un terrain à bâtir ou comme un terrain industriel, tout en prenant garde à la déclaration de la nature du sous-sol dans des limites de la nouvelle décharge enfouie, et aux règles de calculs des fondations en génie civil comme précisé plus haut.

6.1.1.2 Cas des gros consommateurs des conduites en amiantes ciment

Dans cette catégorie se classent en particuliers l’ONAS, la SONEDE et la DGBTH. Ces organismes se retrouvent dans une situation pratiquement irrémédiables, dès que l’on se rappelle que toute l’infrastructure nationale a disposé de canalisations en amiantes ciment, pour la mise en place de réseaux AEP, d’assainissement, d’adduction à partir des plans d’eau et distribution dans les périmètres irrigués, réseaux de drainage dans les périmètres et zones hydromorphes,… Encore plus, dans la situation actuelle, la difficulté est plus grande lorsqu’on se rend compte que toute réfection de l’un ou l’autre de ces réseaux, implique un départ en avant dans l’usage de conduites en amiantes ciment seules économiques, mais surtout pratiquement les seules adaptées pour procéder à des réparations en cas d’avares de réseaux anciens. Il en découle que l’abandon du produit amiantes ciment par ces organismes, du moins pour les réseaux anciens est loin d’être une situation réconfortante.

ONAS

Lors de la campagne d’inspection conduite par l’équipe du projet, une visite aux locaux de l’ONAS à la Cherguia a permis de reconstituer les stock considérable de conduites en amiantes ciment de diamètre nominal variant de 150 à 400, déposé à même le sol autour des bâtiments et hangars de l’ONAS. Des analyses d’échantillons ont permis de révéler une constitution intégrant de l’amiante sous forme de crocidolite et de chrysotile.

SONEDE, CRDAs et de la DGBTH

La situation de la SONEDE, des CRDAs (Services de Génie Rural) et de la DGBTH est similaire à celle de l’ONAS. En effet, si pour des réseaux récents, à partir de 2008, les conduites en amiantes ciment ont été abandonnées au profit de l’usage de celles en PVC de toutes dimensions, ou celles comportant des composants substituant l’amiante (conduites renforcées par du métal, par des fibres de cellulose ou par
du PVC ou du plastique, etc.), le problème n’en est pas de même lorsqu’il s’agit de réparations des avaries occasionnées aux réseaux anciens entièrement constitués de canalisations en amiantes ciment.

Heureusement, la plus grande partie du linéaire de ces réseaux anciens étant enterrée, ou située dans des lieux normalement peu fréquentés autrement que par les personnels et agents de contrôle et d’entretien. Le risque de contamination par l’amiantes n’en demeure cependant pas moins reporté dans le temps pour les générations futures, ceci selon la durée de vie et l’usage à terme de ces conduites (30 à 40 ans). En finale, tout porte à proposer de mieux abandonner sur place, car tout déterrerment pourra déboucher sur le risque d’une contamination environnementale. Dès lors, celle-ci devrait être contenue en faisant appel aux techniques et procédures les plus adéquates pour mettre les déchets d’amiantes qui seront générés hors de nuisance à la santé et à l’environnement.

Selon des entretiens avec les responsables de la SONEDE et des CRDA, il est proposé de continuer l’utilisation des stocks existants et une fois terminés on passe au PVC.

Ce qu’on propose dans ce schéma de gestion est de laisser enterrer les conduites amiantées et continuer la pose des conduites en stocks, et une fois on termine ce stock on utilise les PVC mais en gardant les anciennes conduites en place et mettre le nouveau réseau à côté. Ceci permettra la réduction des déchets amiantées et minimisera les coûts de désamiantage au niveau des gros consommateurs. Cette pratique est utilisée en Europe. En ce qui concerne les conduites amiantées en stock, il est recommandé son entretien à travers la couverture et le badigeonnage.

Il reste comme même une partie des déchets existants formée par les débris et qui se trouve actuellement au niveau des parcs, ces débris peuvent être enterrés sur site.

6.1.1.3 Cas des bâtiments fréquentés par le public

Il faut remarquer d’abord remarquer que même dans les Pays d’Europe où l’amiantes est déjà totalement banni depuis plus d’une décennie, il demeure des millions de tonnes d’amiantes sur place sous entretien et maintenance continus après identification de leurs position et usages exacts, en procédant à ne pas des- enterrrer les conduites et en les contournant tout simplement, en badigeonnant l’apparent ou en le revêtant de manière hermétique et en ordonnant à ne le manutentionner sans l’avis et la présence de spécialistes de l’amiantes.

Actuellement en Tunisie, les pratiques en cours considèrent, par ignorance de la nature des matériaux et leurs impacts, les déchets de démolition comme déchets banals et sont gérés sur cette base. Durant notre enquête nous avons constaté que plusieurs bâtiments contenaient auparavant les amiantes, ont été réaménagés et on ne sait pas où sont partis les déchets de démolition.

Il s’agit dans le cas évoqué, d’anciens bâtiments dont des écoles, des hôpitaux, et d’autres blocs administratifs publics. Dans cette situation, il revient soit à l’autorité de tutelle, soit aux districts et directions générales régionales de prendre en charge l’étude d’impact sur l’environnement et l’étude de dépollution qui préciseront l’échéancier des mesures et des actions à entreprendre, y compris l’élimination des déchets dans un CET selon l’espace disponible revenant à ces établissement ou à l’Etat (Ministères, Municipalités), gouvernorat par gouvernorat, voire délégation par délégation. En effet, une adéquation doit être recherchée entre :

(1) l’élimination, le transport régional de ce type de déchet, puis son élimination dans un temps court, car nul ne peut imaginer une décharge qui attendra des années pour recevoir des déchets à la goutte, les frais seront trop élevés, et la gestion trop génante ;

(2) même dans le cas de la multiplication de CET, même petits, avec récupération du terrain pour des usages bien maîtrisés, le gain au plan de la collecte, du transport, et des frais d’enfouissement sera considérable.

Nous rappelons dans ce cadre que durant la phase 1 de cette étude, il a été établi une liste de 42 bâtiments contenant l’amiantes, à risque moyen et dont une intervention urgente d’entretien ou de désamiantage est recommandée.
6.1.1.4 Cas des produits importés à base d’amiante

Dans ce cas, comme mentionné, un contrôle par les Services de Douanes et par la Direction Générale du Commerce et de la Concurrence Industrielle (Ministère du Commerce) a été instauré pour tout produit en vrac, tuyauterie, courroie de transmission, plaque de construction, matériel ménager, et surtout les produits de friction (plaquettes de frein et disques d’embrayage). L’autorisation d’import, ou même d’export a déjà été instaurée dès les années 2000s. Les SD et la DGCCI se doivent de partager les informations (codes en douane, quantités importées, importateurs, utilisateurs, historique, ...) avec l’ANPE et l’ANGeD. Il est peut être judicieux à ce que l’autorisation déjà instaurée et expérimentée dans ce sens soit avalisée par l’ANPE. En effet, à la sortie de la Douane, ces types de produits peuvent être stockés et manipulés dans des ateliers et des magasins où les agents de maîtrise et public demeurent journalièrement exposés à l’amiante. C’est à ce niveau que le contrôle et le suivi de l’ANGeD et de l’ANPE s’imposent avec acuité.

6.1.1.5 Cas des bâtiments et habitations usuelles

C’est le cas le plus compliqué. Ni l’ANGeD, ni l’ANPE, ni le spécialiste ne peuvent se permettre, à contretemps, de faire du porte-à-porte pour savoir quel building, quelle habitation, quel terrain privé ou industriel surtout les petits, ou quelle ferme dans quelle région recèle de l’amiante. Dans ces conditions trois solutions se présentent :

1. Sur action de sensibilisation par la force de la loi et par sensibilisation médiatique, peut amener des déclarations volontaires de ce type de lieux qui seront répertoriés sur des bases de données région par région et communiquées obligatoirement à qui de responsabilité à l’échelle du Pays.

2. Un certificat « bien exempt d’amiante » sera livré aux propriétaires à volontariat. Ce certificat doit être exécuté par un Spécialiste de l’amiante et obligatoirementavalisé par l’ANGeD et l’ANPE.

3. Nous spécifions dans ce rapport par spécialiste, une personne qui soit agréé à ce sujet, prouvée dotée des connaissances de base et d’une grande expérience de reconnaître ce qui peut contenir de l’amiante de ce qui peut ne pas en contenir, et d’identifier l’amiante présent jusqu’au type de minéral.

4. Toute action de démolition de bien ancien, de réparation, d’extension, d’intervention d’envergure sur les lieux, doit amener à exiger à l’entreprise y procédant de présenter ce même certificat avalisé par qui de responsabilité, avant toute action à entreprendre. Toute infraction à la loi qui demeure à établir dans les délais les meilleurs, doit être sévèrement réprimée.

5. Sensibiliser les vendeurs (matériaux de construction) et leur interdire toute vente de matériaux en amiante-ciment, surtout les tôles ondulées et tuyauteries, car il n’est pas exclu que certains en disposent encore en stock et en disposeront encore pour une bonne période.

6.2 Gestion et élimination des déchets futurs

Ici, en dehors de quantités avérées de produits ou déchets d’amiante, de produits typiques confectionnés en amiante (tuyaux, tôles ondulées habituelles, plaques de faux-plafonds) le problème se pose à plusieurs niveau.

6.2.1 Organismes et techniciens spécialisés pour l’enlèvement de l’amiante

L’amiante reconnu sur les lieux, les études ED et EIE étant réalisés le cas échéant, l’enlèvement des produits contenant de l’amiante, ou la démolition d’un bâtiment en contenant, nécessitent l’intervention d’équipes et d’entreprises spécialisées en la matière, qui n’ont pas encore existé en Tunisie pour être expérimentées en la matière.

Il est aussi vain de penser à mettre à l’exercice une entreprise étrangère. D’après nos estimations et l’expérience vécue quant aux estimations des frais de l’œuvre dans ce sens dans le cadre des études de dépollution, révèle que les coûts seront entre cinq et dix fois supérieurs à ceux escomptés dans les limites
des frais de l’action nationale. Ceci dépasse donc toute imagination et n’est surement pas dans les limites de notre budget habituel et respectable.

L’ANGéD et l’ANPE sont surement les plus proches de cette œuvre. Malheureusement, ces Organismes ne peuvent pas intervenir, car au plan légal, ils ne peuvent pas être juge et partie. Il reste donc la solution d’un nouveau montage de sociétés d’étude et d’ingénierie en la matière. Là encore s’impose le problème de l’exigüité du marché qui ne permettra surement pas de multiplier les sociétés spécialisées dans ce sens pour équilibrer l’offre et la demande au plan des frais (appels d’offre) et garantir un choix judicieux de l’adjudicataire pour ce type d’entreprise. De toute façon, il reste pensable à ce qu’une action de sensibilisation et d’incitation soit orientée vers la création d’entreprises de dépollution qui soient multidisciplinaires ; ainsi celle qui est autorisée en désamiantage, puisse œuvrer pour élargir son savoir-faire pour la démercurisation, ou le curage d’un terrain pollué par les hydrocarbures,....

Dans tous les cas l’entreprise créée et intervenante doit disposer de l’agrément nécessaire délivré par le Ministère chargé de l’Environnement, et de l’autorisation préalable à tous travaux dument délivrée par les deux Agences ANPE et ANGE à la fois sur la base des deux études préétablies (ED et EIE) pour le site comme évoqué ci-haut.

6.2.2 Transport de l’amiante

La loi 1996 et le décret 2000 ont déjà classé l’amiante parmi les produits dangereux. Il existe aussi une loi sur le transport des produits dangereux, et un arrêté du Ministère de l’Intérieur et des Collectivités Locales concernant le transport des produits dangereux. C’est un acquis, et ces textes de loi s’appliquent donc pleinement,

Il faudra remarquer cependant que tous transports d’amiante, tous stocks sur place, tous emballages contenant de l’amiante, tous lieux en contenant, etc., doivent être munis d’un écritou (étiquette, sigle) qui spécifie l’amiante. Nous pouvons adopter le sigle déjà de pratique en Europe et en Amérique rien que pour l’homogénéisation de l’’indicateur’ à une échelle internationale. Une traduction peut cependant être ajoutée sur ce sigle (صوف حجري en langue arabe, car au fond, il s’agit bien d’une laine de roche, muni du sigle international Attention.

<table>
<thead>
<tr>
<th>Sigles proposés</th>
<th>Sigles déjà adoptés par divers Pays du Monde</th>
</tr>
</thead>
</table>

Ce transport doit être assuré par une entreprise de transport agréé avec toutes les commodités de déclaration et de précautions nécessaires comme stipulé par la loi et arrêté en vigueur.

6.2.3 Elimination de l’amiante

6.2.3.1 Elimination de l’amiante

Les travaux d’élimination de l’amiante (préalablement à toute démolition, à tous travaux) après octroi des autorisations et des avis nécessaires, doit être effectuée par une entreprise agréée. Le principe est simple :

- Les lieux des travaux doivent être totalement isolés,
- Les ouvriers et personnels de l’entreprise doivent être munis des combinaisons et des masques nécessaires,
- Aucun bris lors de chutes ou de travaux d’enlèvement, de stockage, d’emballage sur les lieux, de matériaux contenant de l’amiante (amiante ciment, tôles) n’est souhaité, toléré ou autorisé,
- Toute matière à base d’amiante enlevée doit être emballée dans un sac en plastique étanché, étiquetée pour l’identification. Emballage sur lequel sera apposé le sigle mentionné.
Dans le cas de manutention de produits en poudre, de curage de lieux ou dans l’obligation avérée d’entreprendre le bris du produit contenant de l’amiante à éliminer, il est nécessaire de procéder au jet et à l’asperson d’eau, car rappelons-le, l’amiante en milieux aqueux ne s’éparpille très difficilement en fibrilles nocives.

Les volumes des emballages doivent être réduits au maximum ; par exemple, des plaques ondulées doivent être descendues sans bris et doivent être soigneusement empilées et emballées de la manière la plus sécurisante.

L’élimination de l’amiante doit s’effectuer sous le contrôle d’un agent ANGeD ou ANPE.

6.2.3.2 Mise en décharge : les techniques disponibles

Elle se fera sur la fois du PGE-PS sur lesquels le maître d’ouvrage se sera engagé vis-à-vis de l’ANPE et de l’ANGED. Le choix du lieu d’élimination aura donc été explicité auparavant avec un quantitatif des déchets, un plan de situation et un plan d’intervention précis, et un plan de structure de la décharge et d’ouvrages connexes.

La mise en décharge de produits dangereux des déchets d’amiante est l’option la moins chère d’élimination, la plus pratique et la plus utilisée pour ce type de déchets. En outre, ce moyen d’élimination est considéré comme le plus rentable à moyen et long terme. Deux possibilités se présentent :

Une élimination en décharge in situ

Il s’agit d’étudier, d’autoriser et de construire une décharge des déchets d’amiante surtout sur les sites qui en sont bien menés. Nous recommandons néanmoins, comme explicité plus haut que cette décharge soit non apparente, dès qu’elle est bien identifiée, restant sous la responsabilité du propriétaire du terrain. L’espace de la décharge peut dans ce cas être valorisé, donc défalqué des frais de la construction de cette décharge.

Une élimination en décharge ex-situ.

Elle est possible, mais elle engage en plus des frais de transport, un regroupement des déchets d’amiante provenant de plusieurs sites. De plus elle devrait être spécialisée amiante. Avec ou sans stabilisation, le déchet est enterré dans cette décharge qui prend la forme d’un Centre d’Enfouissement de déchets dangereux gardé.

En Europe, d’anciennes carrières de mines (métalliques, sels, substances utiles) ont été utilisées comme décharges de produits dangereux. Néanmoins, le cas est trop mal adapté pour la Tunisie. D’abord nos mines (en dehors de celle de Bougrine qui risque d’ailleurs de reprendre ses activités) ont été exploitées avant les années 1970s pour leur partie oxydée superficielle (zone épigène). Leurs protores (zone hypogène) demeurent très probants. Ce cas doit donc être éliminé. Les carrières de substances utiles (pierre marbrière, sables, argiles dans certains cas) communiquent avec les nappes, d’où pollution possible par d’autres contaminants associés à l’amiante. De plus, les gabarits de nos carrières sont tellement petits, que des quantités énormes ne peuvent pas y être stockées, sans oublier la nécessité d’un entretien à perpétuité. Dès lors cette solution est hors limite de budget, donc surement non économique pour le Pays, et sans ignorer les problèmes sociaux qui peuvent se poser ; la décharge de Jeradou en a bien montré l’exemple, après tentative de démarrage d’activité.

La vitrification

En outre, en dehors des sites d’enfouissement, il existe actuellement en Europe d’autres options thermiques pour détruire l’amiante en permanence en le transformant en un simple verre (vitrification) par l’emploi de torches à plasma puissantes, pour en débarrasser l’environnement, et récupération du verre pour élimination dans une décharge non contrôlée, économie oblige. Selon les données, les processus thermiques nécessitent une chaleur élevée et une haute énergie pour détruire l’amiante qui est de fait un minéral hautement réfractaire. Les températures de vitrification se situent dans la marge 1500-2000C . Le processus de vitrification est donc hautement énergivore et est hors marge économique pour la Tunisie.
Dans ce cas, l’amiante est introduit dans l’unité thermique pour un temps de séjour nécessaire. Ensuite, le produit de transformation doit être refroidi avant d’effectuer un test. Si à la lumière de ce test, le produit final (verre) est exempt d’amiante sous examen par microscopie électronique à transmission, l’opération est réussie, mais s’il s’avère qu’il en contient toujours, le produit final déjà obtenu doit être recyclé dans la torche. Les températures élevées ont besoin de fortes quantités d’électricité, à un coût de plus en plus élevé, avec des coûts de maintenance élevés sur le réfractaire faisant paroi de four de brique intérieure. En outre, l’unité thermique doit avoir un système de lavage complet et efficace qui empêche l’échappement de sous-produits potentiellement nocifs (par exemple : dioxines, furannes et oxydes d’azote).

Dans le cadre de cette étude et en tenant compte des caractéristiques particulières des déchets d’amiante en Tunisie (principalement en amiante-ciment), le terrain et les caractéristiques géographiques générales du Pays, l’option d’enfouissement des déchets s’avère comme la solution technico-économique optimale de choix.

Le choix d’un endroit approprié pour la construction d’un site de stockage de déchets d’amiante implique, tout d’abord, l’examen des paramètres géographiques. La recherche pour la détection des sites potentiels pour la construction de sites d’élimination commence, une fois que les critères géographiques ont été déterminés.

Les sites de stockage potentiels doivent répondre à plusieurs critères qui ont été déterminés au cours du travail d’enquête. Ces paramètres de sites de décharges sont au moins les suivants :

- Caractéristiques topographiques,
- Caractéristiques géologiques,
- Caractéristiques géotechniques,
- Caractéristiques hydrologiques,
- Données climatiques.
- Substances dangereuses dans les échantillons de sol, la roche et l’eau.

La pertinence d’une zone (par exemple mine et carrière abandonnées) pour être utilisée comme un lieu d’enfouissement de ce déchet, est examiné en ce qui concerne les exigences techniques d’une décharge de déchets dangereux d’amiante seulement. Pour cette raison, il est proposé que la zone doive satisfaire au moins aux normes suivantes:

- Distance de règlement> 1 km.
- Distance de sites archéologiques et monuments> 1 km.
- Distance du littoral> 1 km.
- Distance d’un aéroport> 3 km.
- Distance d’un lac> 1 km.
- Possibilité d’accès à la zone pour le transport et l’élimination des déchets d’amiante.
- Électricité et l’approvisionnement en eau pour la construction et le bon fonctionnement.
- Système de drainage disponible.
- Absence de lieu et zone naturels protégés.

6.2.4 Les décharges d’amiante en Europe

Selon la Décision du Conseil de l’Europe 2003/33 / CE: du 19 décembre 2002, établissant des critères et des procédures d’admission des déchets dans les décharges, conformément à l’article 16 et à l’annexe II de la directive 1999/31 / CE, et en particulier dans le paragraphe 2.3.3 de cette décision, les conditions et les exigences suivantes doivent être assurées pour la mise en décharge des déchets d’amiante:
Les matériaux de construction contenant de l'amiante et d'autres déchets d'amiante peuvent être mis en décharge dans des décharges pour déchets non dangereux conformément à l'article 6 (c) (iii) de la directive sur les décharges sans essai.

Les décharges qui reçoivent des matériaux de construction contenant de l'amiante et d'autres déchets d'amiante les conditions suivantes doivent être remplies:

- Les déchets ne contiennent pas d'autres substances dangereuses que l'amiante lié, comprenant des fibres liées par un liant ou emballées dans du plastique,
- La décharge accepte uniquement des matériaux de construction contenant de l'amiante et d'autres déchets d'amiante appropriés. Ces déchets peuvent également être mis en décharge dans une cellule séparée d'une décharge pour déchets non dangereux, si la cellule est suffisamment autonome,
- Afin d'éviter la dispersion des fibres, la zone de stockage est recouverte chaque jour et avant chaque opération de compactage avec un matériau approprié et, si les déchets ne sont pas emballés, elle est régulièrement arrosée,
- Une couverture supérieure finale est mise sur la cellule de mise en décharge afin d'éviter la dispersion des fibres,
- Ne pas effectuer de travaux sur le site d'enfouissement/cellule qui pourrait conduire à une libération des fibres (par exemple le forage de trous),
- Après la fermeture, un plan est conservé de l'emplacement de la décharge / cellule indiquant que les déchets d'amiante ont été déposés,
- Un lieu de décharge de ce type est un lieu condamné. Des mesures appropriées sont prises pour limiter les éventuelles utilisations de la terre après la fermeture de la décharge afin d'éviter tout contact humain avec les déchets.

Un site d'enfouissement de l'amiante, afin de s'assurer que l'environnement, devrait avoir la stratification générale de l'étanchéité du bas vers le haut:

- Couche de mise à niveau - sols argileux
- Barrière géologique géosynthétique (feuilles de géosynthétiques de bentonite GCL)
- Géomembrane en PEHD avec une épaisseur de 2mm
- Zone de drainage géosynthétique - couche de gravier de 50 cm
- Couche de sable d'une épaisseur de 20 cm

Etudes nécessaires exigées

a. Étude de faisabilité pour le projet de construction d'un site d'enfouissement de l'amiante (3 mois).

b. Etude d’impact sur l’environnement pour la construction et l'exploitation de la décharge d'amiante (6 mois).

1. Toutes les études devraient être effectuées par des sociétés conseil indépendantes et spécialisées dotées d’une grande expérience dans le secteur des études de gestion des déchets d'amiante et en particulier dans l’étude d'évaluation d'impact environnemental pour l’enfouissement de l’amiante (expérience : au moins une étude similaire dans les cinq dernières années)

2. Construction de la décharge d’amiante (moins de 1 an après l’approbation et l’autorisation des études).
6.2.5 Proposition pour le cas de la Tunisie

L’enlèvement de l’amiante et son élimination apparaît comme un jeu trop serré où les conditions économiques priment. Par exemple, dégager un terrain de ses déchets et produits d’amiante pour le valoriser, et pour aller en conséquence polluer un second moins cher (du moins aujourd’hui) avec toutes les nécessités de contrôle et de suivi qui n’en finiront pas à générations, est une course loin d’être gagnée. A ces frais, il faut ajouter ceux de transport et de manutention de la décharge, sans oublier les frais de suivi au très long terme.

Dès le moment qu’il s’agit toujours de condamner de l’espace, nous pensons que même si tout le Monde est unanime que la mise en décharge de ce déchet dangereux est la plus économique, il faudra pencher vers des décharges non apparentes in situ qui nécessitent moins de suivi, dont les terrains peuvent être repris pour de nouvelles activités dans la mesure du possible, ou à la limite être disponibles tout au moins comme espaces verts, de parking ou de récréation. Ceci engage l’application de ce qui suit.

Ce type de décharge nécessite une étude complète :

- des conditions climatiques
- des caractéristiques topographiques
- des conditions géologiques du site,
- des conditions hydrologiques et hydrogéologiques du site,
- de la vocation à laquelle le site peut être destiné après construction de la décharge,
- des caractéristiques géotechniques du site,
- des substances dangereuses dans les échantillons de sol, la roche, l’eau et dans le produit à mettre en décharge.

L’imperméabilisation du fond et des parois de la décharge peut être assurée par de l’argile bentonite, alors que la décharge étant située en dessous de la cote NGT du terrain, elle ne nécessite aucun drainage. Le recouvrement de la décharge après recouvrement progressif de terre, tranche par tranche, et compactage humide peut se faire par une géomembrane en PEHD 2mm ou par une couche de plâtre (20% ciment) pour augmenter la portance du sous-sol à construire et enrayer les affaissements. Une dernière couche de sol de 0,5 à 1m d’épaisseur peut sceller l’ensemble.

Pour ce qui est des organismes gros consommateurs (ONAS, SONEDE, CRDAs, DGBTH) de tuyauteries en an amiante ciment plusieurs problèmes se posent :

1. Les quantités énormes de conduits emmagasinés sur les espaces des districts représentent en cas de non utilisation, un manque à gagner énorme. On pourrait suggérer que des conduites peuvent continuer à être utilisées pour la réfection des réseaux à condition de les badigeonner à la peinture à l’extérieur pour diminuer le danger, avant transport sur site et emplacement. Ceci permettra d’éviter la création de décharges in situ coûteuses à tous les plans en plus du manque à gagner mentionné.

2. Si la solution évoquée se réalise, seuls persisteront à éliminer les déchets produits annuellement par la réfection progressive des réseaux en les remplaçant par de nouvelles conduites sans amiante. Il est déconseillé de transporter ce déchet sur de longues distances vers un lieu unique de décharge. Le meilleur c’est que chaque organisme créé une décharge de produits dangereux et non apparente par gouvernorat. Cette décharge peut être développée en alvéoles successives qui seront scellées et utilisées au fur et à mesure. En fait, les avaries de réseaux sont très aléatoires, et même si l’on accorderait à l’amiante ciment une durée de vie de l’ordre de 40 à 50 ans, cela signifie que la plus grande quantité de déchets produits par ces organismes, sera répartie au moins sur les trente années à venir. En effet, nul ne peut prétendre au déterrement de conduites encore fonctionnelles, ni à leur remplacement intégral. Ce sera un plan hors marge économique.

3. Pour les déchets de démolition de bâtiments contenant de l’amiante deux solutions sont possibles :
• Création d’une décharge de déchets dangereux par gouvernorat pour accueillir tous les déchets ;

• En cas de recouvrement de ces déchets par un liant qui pourrait être un mélange plâtre (20%) ciment, après humectation des déchets, leur recouvrement de terre, et leur écrasement. La décharge doit être bien étudiée et non apparente. Dans tous les cas, il est recommandé à œuvrer pour contrecarrer la laideur de ce qui est une décharge et encore plus de produits dangereux, donc suscitant des réactions, notamment près de la ville, et à récupérer le terrain de décharge à des fins d’utilisation ultérieure.

Précisons enfin que la situation en Europe n’est pas celle de la Tunisie, et les moyens économiques, de même. Il est donc toujours utile de réussir la préservation de l’environnement par le renforcement de cette action, en ayant toujours présente à l’esprit la réalité économique du Pays.

6.3 Outils juridiques disponibles: étude de dépollution et étude d’impact social et environnemental

La démarche la plus judicieux et la procédure la meilleure d’identification et d’évaluation de l’étendue des impacts de produits et de déchets d’amiante, et leur manipulation/entretien à l’avenir, doit commencer au point de solliciter de par la loi les institutions et organismes détenteurs de produits et de déchets d’amiante à l’échelle du Pays par le biais :

• des études de dépollution pour les produits et rebus d’amiante existants pour chaque usine.

• d’une Etude d’Impact Environnemental et Social pour toute opération d’envergure de déterrement de conduites ou d’enlèvement de produits à base d’amiante, qui peuvent rentrer dans le cadre de projets futurs conduits par les organismes concernés ;

C’est seulement ensuite sous l’aval de la décision de l’ANPE et de l’ANGeD que l’enlèvement, la manipulation des déchets et produits en amiante, mais aussi leur mise en décharge avec l’application la plus judicieux du PGE et du PS établis, que tous types de travaux peuvent être identifiés et autorisés. Il va de soi qu’a ce titre, le principe « pollueur payeur » s’applique pleinement.

C’est aussi à la lumière de ces études que les Responsables de l’ANPE et de l’ANGeD seront pleinement informés des lieux, des quantités, des travaux accomplis et des intentions des organismes concernés quant à leurs programmes en matière de remplacement des produits en amiante, avec tout ce qui a pu s’en suivre (déchets existants) de par le passé, mais aussi le potentiel futur de chacun de ces organismes et de ces institutions en matière de production de rebus et de déchets d’amiante à l’avenir.

Les EIES et les ED déboucheront également sur un PGE et un Programme de Suivi selon les potentialités et les disponibilités notamment en termes d’espace pour la conservation ou même la mise en décharge des déchets de la manière la plus sécuritaire.

Ce sera aussi un départ bien justifié de l’action en mettant chacun devant ses responsabilités et son obligation à la participation à cet effort national de désamiantage du Pays. Ceci n’exclut pas une entente possible sur la création de décharges communes de déchets d’amiante, éventuellement par région ou par gouvernorat, dans le cadre d’une action concertée à contrôler par les deux organismes concernés : ANPE et ANGeD.

A cet égard, des termes de référence précis des études EIES et ED peuvent spécialement être élaborés pour réussir l’action.
7 Plan d’action pour la gestion des produits et déchets contenant de l’amiante

7.1 Les différents scénarios

L’évaluation de ce plan d’action peut être vue à la lumière d’une comparaison de deux scénarios antagonistes :

- Le scénario d’une interdiction totale de l’amiante et l’élimination de ses déchets générés,
- Le scénario sans élimination de l’amiante (business as usual).

La comparaison des résultats et des implications de ces deux scénarios permet de rendre compte de l’impact global de point de vue économique et social de l’action de gestion des produits d’amiante et de leurs déchets.

7.1.1 Le scénario sans interdiction

Ce scénario suppose la reconduction de la situation actuelle d’utilisation notamment des conduites en amiante ciment utilisées surtout par les organismes gros consommateurs de conduites AC, et de tôles ondulées utilisées communément comme produit d’équipement. Notons aussi que ce scénario doit hériter de la fermeture déjà accomplie de deux usines de transformation de l’amiante (SICOAC et CIAMIT), mais aussi de la décision de fermeture de la troisième usine (El Mawsassir) qui a déjà été programmée pour l’année 2013.

Il faut noter aussi que la fermeture de ces usines répond non seulement à la tendance affichée en Tunisie pour l’interdiction de l’amiante et l’élimination de ses déchets, mais aussi à une décision quasi-unanime à une échelle mondiale de l’éradication de l’amiante et de la nécessité de la gestion la plus respectueuse de l’environnement des déchets d’amiante prouvés hautement dangereux. De ce fait, les trois usines de fabrication d’amiante ciment de Tunisie ont été fermées surtout pour le fait que leurs produits destinés à l’exportation sont devenus pratiquement indésirables et interdits d’échange sur le marché mondial. Ce qui signifie une acquisition sans détour du stade d’usines totalement indésirables tant sur le plan économique et social que sur le plan du risque avéré occasionné à la santé humaine.

Nous avons exposé dans le rapport de première phase que les pays qui ont banni l’amiante ont vu leurs entreprises qui transformaient auparavant l’amiante, se convertir à la production de produits de substitution divers comme utilisitaires et équipements à base de composants non amiantés. Cette transition a pratiquement été réussie sans conséquences économiques notables, avec un gain considérable en ce qui concerne la substitution réussie de l’amiante, l’assainissement de l’environnement et en matière de préservation de la santé humaine.

Le scénario “business as usual” simulant la continuation de l’utilisation de l’amiante, sans le souci de gestion de ses déchets prouvés hautement dangereux surtout pour la santé humaine, aura donc des conséquences graves sur la santé et sur l’environnement. Dans ce cas, il faut attirer l’attention sur les faits suivants :

- Laisser à l’air libre les quantités des déchets en amiantes actuellement à la surface sur tout le territoire tunisien et qui sont évaluées à environ 16 377 tonnes (conduites en stocks + bâtiments publics et privés + les déchets dans les usines de transformation). La gestion actuelle de ces déchets favorise un risque néfaste sur la santé des usagers des endroits de stockage les lieux contenant de l’amiante.
- Continuer à utiliser l’amiante peut conduire à des conséquences graves sur la santé que ce soit dans la seule usine transformant encore de l’amiante (El Mawassir), lors de la manipulation de produits existants comme les conduits en AC et leurs déchets chez les organismes gros consommateurs d’amiante,
• L’amiante ciment ayant une durée de vie de l’ordre de 40 ans, ce qui implique une dégradation de plus en plus poussée des équipements en contenant, et donc une recrudescence des risques pour la santé et pour l’environnement durant les trois prochaines décennies,

• Les conduits en amiante ciment et l’amiante lui-même étant déjà interdits d’échange sur le marché mondial, ce scénario “business as usual” se heurtera donc à un problème certain d’approvisionnement en amiante en poudre pour la fabrication de conduites, ce qui représente un problème économique certain pour le pays et pour ses nécessités en matière d’équipement,

• L’importation de produits de substitution bon marché et leur mixture avec les produits en amiante ciment sur place sans que ces derniers ne soit éliminés et leurs déchets bien gérés, débouchera surement sur un éparpillement des déchets d’amiante dans l’environnement dont les conséquences ne pourront pas être supportés par l’environnement et par la santé,

• Que les mesures effectuées en cours de ce projet ont montré une contamination des usines, mais ils n’ont pas toujours montré une contamination avérée des lieux publics par l’amiante, n’exclut pas la contamination future de ces lieux lors de bris d’amiante ciment ou de la détérioration de produits d’amiante en cours de démolition ou de vieillissement des produits en amiante ciment à l’avenir. C’est dire que le risque avéré est strictement imprévisible dans le temps, mais il reste toujours acquis.

• Dans tous les cas, les résultats d’études épidémiologiques effectuées de par le monde, exposés dans la phase I de ce projet, montrent une augmentation accélérée des pertes en vie humaines liées aux impacts de l’amiante sur la santé humaine durant les trois dernières décennies. Et même si nous ne disposons d’aucune donnée épidémiologique du type pour notre pays, toute perte en vie humaine quelle qu’en soit le nombre demeure pratiquement inestimable, et est donc à éviter à tout prix.

Ces quelques éléments montrent que les coûts de l’environnement et de santé à supporter dans le cas de ce scénario seront trop élevés, beaucoup plus élevés que ceux du cas “scénario sans amiante”, surtout qu’il s’agit de vies humaines à sauver, et que le danger ira en augmentant à l’avenir compte tenu des déchets d’amiante qui seront générés à cause d’une durée de vie limitée des produits en amiante ciment.

C’est exactement aussi dire que le simple fait d’évoquer la possibilité de ce scénario “business as usual” relève du pur imaginaire, et que ce scénario demeure dans tous les cas hors marge économique et sanitaire comparativement au scénario avec interdiction de l’amiante.

7.1.2 Le scénario avec interdiction de l’amiante

Nous avons montré dans le rapport de la première phase, qu’à l’instar de tous les pays qui ont réussi à bannir l’amiante, la Tunisie peut à son tour réussir son action actuelle visant une interdiction totale de l’utilisation de l’amiante et de l’élimination de ses déchets. Les principales constatations concernant ce scénario sont les suivantes :

• La fermeture de deux usines (SICOAC et CIAMIT) et la gestion de leurs déchets en amiante est déjà réussie,

• Les organismes gros consommateurs d’amiante ont déjà réussi la transition au stade après amiante sans difficultés et sans gêne économique,

• L’usine de SICOAC s’étant déjà convertie pour la fabrication de conduites en PVC, et la conversion similaire de l’usine El Mawassir étant programmée au cours de l’année 2014, il faut noter que cette reconversion s’est passée pratiquement sans conséquences sur la plan économique et social (selon les dits des industriels), mais surtout avec un gain considérable pour l’environnement et pour la santé humaine,
• Les produits en tout genre de substitution de ceux à base d’amiante étant aujourd’hui très bon marché et disponibles, ceci traduit le passage de l’économie mondiale à “l’ère après amianté”, de plus cette transition s’est effectuée pratiquement sans incidences économiques ou sociales ;

• Il en résulte que le gain essentiel est celui d’arrêter les pertes en vies humaines, notamment pour les agents travaillant de l’amiante dans les usines, et d’assainir l’environnement pour les générations futures,

• Les coûts de gestion des déchets générés par l’amiante ne sont pas excessifs, puisqu’ils sont non seulement créateur d’emplois (expertises, opérateurs spécialisés pour l’enlèvement de l’amiante et sa mise en décharge, etc.), mais ils représentent une dépense pour un gain certain sur le plan de la santé publique et de l’assainissement de l’environnement. Ces coûts sont estimés ci-dessous pour les principaux projets d’enlèvement et d’élimination de l’amiante à envisager pour le pays.

7.1.3 Récapitulatif des scénarios

Les quantités des déchets en amiantes sont calculées pour les deux scénario (avec interdiction et sans interdiction. Les résultats sont comme suit :

<table>
<thead>
<tr>
<th>Localisation du produit</th>
<th>Quantité de déchets actuellement sur le territoire (déchets + stock) Tonnes</th>
<th>Déchets à Court Terme en Tonnes (durant 10 prochaines années) Tonnes</th>
<th>Déchets à Moyen et Long Termes en Tonnes (de 10 à 50 ans) s’il n’y aura pas d’action d’élimination et/remplacements</th>
<th>Déchets à Moyen et Long Termes en Tonnes juste après 10 ans d’élimination de tous les déchets jusqu’à 50 ans s’il y aura élimination de tous les déchets existants durant les 10 ans</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bâtiments inventoriés (tôle conduites EP)</td>
<td>5637</td>
<td>5 637</td>
<td>5637</td>
<td>0</td>
</tr>
<tr>
<td>Bâtiments privés (tôle conduit EP)</td>
<td>2000</td>
<td>2000</td>
<td>2000</td>
<td>0</td>
</tr>
<tr>
<td>Déchets au niveau des 3 usines</td>
<td>650</td>
<td>650</td>
<td>650</td>
<td>0</td>
</tr>
<tr>
<td>Stock des Organismes (ONAS, SONEDE et CRDA)</td>
<td>8090</td>
<td>45 090</td>
<td>3 565 784</td>
<td>3 520 694</td>
</tr>
<tr>
<td>TOTAL DE DECHETS</td>
<td>16377</td>
<td>5 337</td>
<td>3 574 071</td>
<td>3 520 694</td>
</tr>
</tbody>
</table>

7.2 Principe pollueur-payeur et responsabilités

En respect du principe “pollueur-payeur” imposé par la loi, chaque organisme doit supporter à sa propre charge les frais de désamiantage des lieux, la gestion de ses déchets d’amiante et leur élimination dans la décharge la plus indiquée. Deux cas se présentent :

- Pour les organismes statiques à caractère commercial (ONAS et SONEDE) et organismes privés dont les usines CIAMIT, SICOAC et El Mawassir, les frais d’études, de désamiantage, de gestion des déchets d’amiante et leur élimination doit être portés à la charge de ces organismes,

- Pour les organismes publics (Ministères, CRDAs, etc...), les frais des études et des différentes opérations peuvent être reportés sur les budgets alloués à chacun de ces organismes et institutions. Dans le cas où on opte pour le scénario de laisser en place les conduites en amianté et mettre à côté le nouveau réseau avec le stockage (en respectant les conditions et les mesures mentionnées dans ce document) du stock existant et l’utiliser, les coûts de désamiantage se limiteront à l’enfouissement des débris amiantés au niveau des parcs (quantités minimes).
- Enfin, une aide peut être allouée pour les organismes étatiques ou même pour les organismes à caractère commercial ou pour les privés, sachant bien que la valeur de ce type d’aide ne pourra être fixée qu’après une évaluation tout au moins exhaustive des déchets d’amiante générés par chaque pollueur. Rappelons à ce sujet, que les quantités réelles de déchets d’amiante à générer dans le futur n’ont pas toujours pu être cernées dans le cadre de cette étude malgré de nombreuses tentatives de contact pour obtenir les informations nécessaires.

7.3 Expérience étrangère pour la gestion des déchets d’amiante

Dans les pays européens en particulier, tout détenteur de produits et déchets d’amiante est tenu de déclarer les quantités les concernant en sa possession. Cette déclaration se situe en amont de toutes les études des opérations d’inspection, d’enlèvement de l’amiante par des opérateurs spécialisés et d’élimination des déchets d’amiante et de démolition y afférents dans un lieu de décharge autorisé.

Le transport des produits et déchets d’amiante sont du ressort de sociétés de transport autorisées munies du bordereau nécessaire pour le transport de ces produits dangereux qui sont généralement emballés dans du plastique et comportant le sigle indiquant la présence d’amiante dans le produit transporté.

La gestion des produits et déchets d’amiante peut s’effectuer de plusieurs manières :

1. Les produits et équipements à amiante identifiés peuvent être laissés sur place, conditionnés (manutention, isolement, badgeonnage, etc.) avec un suivi régulier de l’état de dégradation des utilitaires comportant de l’amiante. **De ce fait, il existe encore des millions de tonnes de matériaux en amiante sur place qui n’ont pas été enlevés, mais qui ont été techniquement mis hors de nuire suite à l’intervention d’opérateurs spécialisés dans l’étude, la manutention, l’entretien et la gestion des déchets d’amiante.**

2. Pour l’amiante des conduites souterraines, la pratique est généralement de laisser ces conduites et leurs déchets enterrés sur place, et de contourner les réseaux dès que possible en installant de nouvelles conduites exemptes d’amiante. Ces conduites représentant la majeure partie de l’amiante ciment des équipements, il est donc préférable de les laisser enterrées, plutôt que de dépenser des frais devenant rapidement insupportable en les déterrant et en les mettant en décharge.

3. Pour les utilitaires en amiante pour lesquels la décision d’enlèvement définitif est prise, les l’intervention revient à des opérateurs spécialisés agréés et les déchets à amiante générés et les produits de démolition connexes sont emballés dans du plastique, et enlevés par des transporteurs agréés vers les lieux de décharges définitifs.

4. En France, ce type de déchets peut être accepté dans des décharges publiques de déchets considérés inertes à condition de procéder à une stabilisation de l’amiante entre autres par le moyen de cimentations variées. Cette opération peut néanmoins être trop couteuse. Par exemple, avant de stabiliser une conduite, il faudra la broyer pour réduire le volume et faciliter la stabilisation, ce qui représente un risque énorme d’éparpillement de l’amiante.

5. L’élimination dans des décharges de produits dangereux peut revêtir plusieurs aspects :

 a. Elimination dans les anciennes excavations de carrières ou dans les anciennes galeries et puits miniers. Cette procédure nécessite néanmoins une étanchéisation des lieux de décharge comme par des géotextiles, surtout pour parer à toute migration de contaminants divers (métaux, peintures, produits chimiques, etc.) pouvant être associés aux déchets d’amiante et produits de démolition connexes. En effet, il a été constaté que l’élimination de produits...
dangereux dans les anciennes galeries et excavations minières (mines de sel par exemple) a débouché sur la pollution des nappes souterraines. C’est pourquoi ce type de gestion des déchets de produits dangereux a tendance plutôt à être abandonné.

b. Elimination dans des décharges de produits dangereux : ce type de décharge est muni de géotextiles assurant l’étanchéité de la décharge, parant ainsi à toute contamination des nappes souterraines et de l’environnement, tout en garantissant toutes les opérations de réception, d’élimination en décharge, de contrôle et de suivi de la décharge à moyen et long terme. Les décharges sont généralement opérées par des sociétés privées.

7.4 Actions et structures à mettre en place pour la gestion des produits et déchets d’amiante

7.4.1 Quantitatifs des matériaux amiantés à éliminer

Les produits et déchets d’amiante existant actuellement et ceux qui seraient amenés à être produits à moyen et long termes ont été estimés comme suit durant les travaux de la première phase :

<table>
<thead>
<tr>
<th>Localisation du produit</th>
<th>Déchets à Court Terme (10 ans) en Tonnes</th>
<th>Déchets à Moyen et Long Termes en Tonnes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bâtiments inventoriés (tôle+conduites)</td>
<td>5 637</td>
<td>0</td>
</tr>
<tr>
<td>Bâtiments privés</td>
<td>2 000</td>
<td>0</td>
</tr>
<tr>
<td>Déchets d’usines</td>
<td>650</td>
<td>0</td>
</tr>
<tr>
<td>Organismes gros consommateurs d’amiante ciment</td>
<td>45 090</td>
<td>3 520 694</td>
</tr>
<tr>
<td>TOTAL DE DECHETS</td>
<td>53 377</td>
<td>3 520 694</td>
</tr>
</tbody>
</table>

7.4.1.1 Les déchets d’amiante et conduits AC des organismes gros consommateurs d’amiante

On commence par un rappel des quantités des conduites utilisées et en stock actuellement dans les parcs sont comme suit (en considérant en moyenne 1 km de conduite pèse 100 tonnes) :

Tableau 7-1. Récapitulatif des quantités des conduites en AC chez les gros consommateurs

<table>
<thead>
<tr>
<th>Longueur du Réseau</th>
<th>Déchets annuels</th>
<th>Déchets produits en 10 ans</th>
<th>Stocks (AC)</th>
<th>Déchets à court terme (disponible actuellement et prévu dans les 5 à 10 prochaines années)</th>
<th>Déchets moyen et long termes (dans 10 à 50 ans et plus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>en km</td>
<td>Ton.</td>
<td>km/an</td>
<td>Ton/an</td>
<td>Ton.</td>
<td>En km</td>
</tr>
<tr>
<td>SONEDE</td>
<td>25000</td>
<td>250000</td>
<td>9</td>
<td>900</td>
<td>9000</td>
</tr>
<tr>
<td>MINISTÈRE DE L’AGRICULTURE ET DES RESSOURCES HYDRAULIQUES (CRDAs, GR)</td>
<td>8284</td>
<td>828400</td>
<td>28</td>
<td>2800</td>
<td>28000</td>
</tr>
<tr>
<td>ONAS</td>
<td>2373,84</td>
<td>237384</td>
<td>-</td>
<td>-</td>
<td>20</td>
</tr>
<tr>
<td>TOTAL DE DECHETS À PREVOIR</td>
<td>80,9</td>
<td>8090</td>
<td>45 090</td>
<td>3 520 694</td>
<td></td>
</tr>
</tbody>
</table>
Selon les quantitatifs, il va falloir prévoir un budget pour l’entretien et le stockage des conduites encore utilisables et celles en stock, et l’élimination des débris qui représentent environ 10 % des quantités en stock, déposées à l’extérieur (stock + conduites usées), soit environ 629 tonnes. L’élimination passe par plusieurs étapes :

- Etude de dépollution (par parc)
- Humidification
- Couverture des parcs par un plastique
- Ecrasement des débris (avec toutes les mesures de protection des travailleurs)
- Aménagement d’une cellule de décharge de 50 à 100 m² par parc
- Enfouissement des déchets dans la cellule d’enfouissement
- Couverture et végétation des lieux d’enfouissement
- Analyse de la qualité de l’air

Le coût est réparti comme suit :

<table>
<thead>
<tr>
<th>Organisme</th>
<th>Quantité des conduites usées et stock (tonne)</th>
<th>Quantité des débris à enfouir/éliminer (tonne)</th>
<th>Prix d’élimination d’une tonne de débris (DT)</th>
<th>Coût total de désamiantage des parcs (DT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SONEDE</td>
<td>890</td>
<td>89</td>
<td>700</td>
<td>62 300</td>
</tr>
<tr>
<td>Ministère de l’agriculture (CRDA, GR,...)</td>
<td>5200</td>
<td>520</td>
<td>700</td>
<td>364 000</td>
</tr>
<tr>
<td>ONAS</td>
<td>2000</td>
<td>20</td>
<td>700</td>
<td>14 000</td>
</tr>
<tr>
<td>Total</td>
<td>8090</td>
<td>629</td>
<td>700</td>
<td>440 300</td>
</tr>
</tbody>
</table>

7.4.1.2 L’amiante dans les bâtiments publics

Dans le tableau suivant on rappelle les quantités inventoriées par ministère. Ces quantités sont en majorité des tôles ou des conduites.

Tableau 7-2. Estimations des déchets en amianté ciment qui seront produits par les bâtiments publics des Ministères à l’échelle du Pays.

<table>
<thead>
<tr>
<th>Ministère</th>
<th>Quantité (Tonne)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ministère de l’Education et de l’Enseignement</td>
<td>522,598</td>
</tr>
<tr>
<td>Ministère de l’Agriculture</td>
<td>1982,100</td>
</tr>
<tr>
<td>Ministère de l’Equipement et de l’Environnement</td>
<td>18,650</td>
</tr>
<tr>
<td>Ministère de transport</td>
<td>526,750</td>
</tr>
<tr>
<td>Ministère de l’Intérieur et de Développement locale</td>
<td>1897,400</td>
</tr>
<tr>
<td>Ministère de la santé publique</td>
<td>688,750</td>
</tr>
<tr>
<td>Total (tonne)</td>
<td>5 637</td>
</tr>
</tbody>
</table>

Le désamiantage des bâtiments se réalisera par tranche selon le niveau de risque. Dans le rapport de la première phase on a établi les listes des bâtiments à risque moyen et ceux à risque faible. En l’absence des bâtiments à risque élevé et en considérant le contexte tunisien (faiblesse au niveau des entretiens des bâtiments publics) on recommande le désamiantage des bâtiments à risque moyen dans les meilleurs délais. Selon une méthode d’évaluation des risques explicitée dans le chapitre 5, on a pu dégager 42 sites prioritaires dont le désamiantage est urgent. On cite :
<table>
<thead>
<tr>
<th>SITE</th>
<th>BÂTIMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commissariat Régional de L’Education - Ariana</td>
<td>Dépôt Auto</td>
</tr>
<tr>
<td>Hôpital Abderrahmen Mami - Ariana</td>
<td>Chauffeerie</td>
</tr>
<tr>
<td>Hôpital Abderrahmen Mami - Ariana</td>
<td>PAV2</td>
</tr>
<tr>
<td>Hôpital Abderrahmen Mami - Ariana</td>
<td>Mosquée</td>
</tr>
<tr>
<td>Ecole Primaire Saline - Ben Arous</td>
<td>Kheireddine Bacha</td>
</tr>
<tr>
<td>Ecole Primaire Saline - Ben Arous</td>
<td>Bâtiment administratif</td>
</tr>
<tr>
<td>Ecole Primaire Ibn Sina - Ben Arous</td>
<td>Derrière salles de classes 5, 6, 7, 8</td>
</tr>
<tr>
<td>Ecole Primaire Ibn Sina - Ben Arous</td>
<td>En face des salles de classes 5, 6, 7, 8</td>
</tr>
<tr>
<td>Ecole Primaire Ibn Sina - Ben Arous</td>
<td>Derrière bloc sanitaire “toilette”</td>
</tr>
<tr>
<td>Ecole Primaire Khaznadar Ezzahra - Ben Arous</td>
<td>Surface extérieure</td>
</tr>
<tr>
<td>Ecole Primaire Khaznadar Ezzahra - Ben Arous</td>
<td>Surface extérieure</td>
</tr>
<tr>
<td>Agence des Ports et des installations de pêche (APIP) - Gabes</td>
<td>Surface extérieure</td>
</tr>
<tr>
<td>Agence des Ports et des installations de pêche (APIP) - Gabes</td>
<td>Dépôt de stockage</td>
</tr>
<tr>
<td>Agence des Ports et des installations de pêche (APIP) - Gabes</td>
<td>Surface extérieure</td>
</tr>
<tr>
<td>Parc de la Commune de Zarat - Gabes</td>
<td>Surface extérieure</td>
</tr>
<tr>
<td>Ecole Préparatoire Technique - Gafsa</td>
<td>Ecole Préparatoire Technique</td>
</tr>
<tr>
<td>Ecole Préparatoire Technique - Gafsa</td>
<td>Ecole Préparatoire Technique</td>
</tr>
<tr>
<td>Hôpital Circonscription Sebilia - Kasserine</td>
<td>Administration Hôpital</td>
</tr>
<tr>
<td>Hôpital Circonscription Sebilia - Kasserine</td>
<td>Administration Hôpital</td>
</tr>
<tr>
<td>Commissariat Régional de l’Education - Kebili</td>
<td>CRE Kebili</td>
</tr>
<tr>
<td>Commissariat Régional de l’Education - Mahdia</td>
<td>Surface extérieure</td>
</tr>
<tr>
<td>Commissariat Régional de l’Education - Mahdia</td>
<td>Mur de clôture</td>
</tr>
<tr>
<td>Clinique de Chirurgie Dentaire - Monastir</td>
<td>Derrière salle d’attente du service PPA</td>
</tr>
<tr>
<td>Ecole Primaire El Houda Moknine - Monastir</td>
<td>Salle de classes de 14 a 17</td>
</tr>
<tr>
<td>Lycée Hedi Khafacha - Monastir</td>
<td>Cour derrière salle de professeur dépôt divers</td>
</tr>
<tr>
<td>Ecole Préparatoire Ibn el Haimem - Sfax</td>
<td>Surface extérieure</td>
</tr>
<tr>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Logement économe</td>
</tr>
<tr>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Logement économe</td>
</tr>
<tr>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Logement surveillant général d'internat</td>
</tr>
<tr>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Logement surveillant général d'internat</td>
</tr>
<tr>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Logement surveillant général d'internat</td>
</tr>
<tr>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Logement surveillant général d'internat</td>
</tr>
<tr>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Logement surveillant général d'internat</td>
</tr>
<tr>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Logement surveillant général d'internat</td>
</tr>
<tr>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Logement directeur du lycée</td>
</tr>
<tr>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Logement directeur du lycée</td>
</tr>
<tr>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Logement directeur du lycée</td>
</tr>
<tr>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Logement directeur du lycée</td>
</tr>
<tr>
<td>Lycée Ali Bourguiba Mahres - Sfax</td>
<td>Logement directeur du lycée</td>
</tr>
<tr>
<td>Commissariat Régional de l’Education - Sidi Bouzid</td>
<td>Parking des voitures</td>
</tr>
<tr>
<td>Commissariat Régional de l’Education - Siliana</td>
<td>Parking</td>
</tr>
<tr>
<td>Usine Tecno Seals Tunisie - Sousse</td>
<td>Près du mur de clôture de l’usine</td>
</tr>
<tr>
<td>Dépôt TGM - Tunis</td>
<td>Dépôt TGM</td>
</tr>
<tr>
<td>Dépôt TGM - Tunis</td>
<td>Train A108</td>
</tr>
<tr>
<td>Raffinerie Tunisienne de soufre Jebel Jloud - Tunis</td>
<td>Surface extérieure</td>
</tr>
</tbody>
</table>

Les coûts de désamiantage des bâtiments est calculables par bâtiment (distance de transport, surface à décontaminer, nature de la contamination, accessibilité, quantité exacte, ...). Chaque ministère est tenu de lancer une étude spécifique pour déterminer les coûts exacts pour la déscontamination de ces bâtiments.

Juste pour avoir une idée approximative sur le budget nécessaire au désamiantage par ministère et on considérant qu’il s’agira du retrait des tôles et des conduites d’eaux pluviales au niveau des bâtiments, on obtient les chiffres suivant :
<table>
<thead>
<tr>
<th>Ministère</th>
<th>Quantité (Tonne)</th>
<th>Prix moyen par tonne (désamiantage + enfouissement)</th>
<th>Prix total (DT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ministère de l’Education et de l’Enseignement</td>
<td>522,598</td>
<td>700 DT</td>
<td>365 818,6</td>
</tr>
<tr>
<td>Ministère de l’Agriculture</td>
<td>1982,100</td>
<td>700 DT</td>
<td>1 387 470</td>
</tr>
<tr>
<td>Ministère de l’Equipement et de l’Environnement</td>
<td>18,650</td>
<td>700 DT</td>
<td>13 055</td>
</tr>
<tr>
<td>Ministère de transport</td>
<td>526,750</td>
<td>700 DT</td>
<td>368 725</td>
</tr>
<tr>
<td>Ministère de l’Intérieur et de Développement locale</td>
<td>1897,400</td>
<td>700 DT</td>
<td>1 328 180</td>
</tr>
<tr>
<td>Ministère de la santé publique</td>
<td>688,750</td>
<td>700 DT</td>
<td>482 125</td>
</tr>
<tr>
<td>Total (tonne)</td>
<td>5 637</td>
<td></td>
<td>3 945 900</td>
</tr>
</tbody>
</table>

Le retrait des amiantes au niveau des bâtiments passe par 3 étapes :

1. Inspection du bâtiment et identification des lieux contenant de l’amianté
2. Réalisation d’une étude de dépollution pour la délimitation précise des zones contaminées et l’évaluation des risques
3. Réalisation des travaux de désamiantage : Pour le retrait de l’amianté-ciment (pour les travaux de démolition ou de rénovation), la méthode pratique consiste:
 - délimiter la zone de travail et assurer la sécurité des autres personnes;
 - planifier le travail pour réduire ou éviter la perturbation des matériaux contenant l’amianté;
 - recouvrir les surfaces par des feuilles de polyéthylène d’épaisseur 125 µm [jauge 500] ou 250 µm (devant être évacuées et éliminées après le travail en tant que déchets pouvant être contaminés par l’amianté);
 - exécuter le travail en limitant le nombre des travailleurs présents;
 - appliquer des méthodes réduisant la libération de fibres d’amianté dans l’air (par exemple aspiration des surfaces, pulvérisation d’eau);
 - utiliser des appareils de protection respiratoire classifiés pour l’amianté;
 - enlever l’amianté-ciment avant la démolition;
 - protéger de la contamination les autres surfaces (pour les travaux de rénovation);
 - éviter de casser les matériaux d’amianté-ciment; enlever le matériau en entier;
 - maintenir le matériau mouillé lorsqu'on travaille dessus mais ne pas utiliser trop d'eau, car ceci créerait de la boue;
 - si l'amianté ciment à enlever se trouve à une grande hauteur, descendre le matériau d’amianté ciment sur une surface dure propre; utiliser des méthodes d'accès sécurisées pour retirer les matériaux amianté ciment se trouvant à des emplacements élevés ;
 - enlever le plus tôt possible les déchets et les débris contenant de l'amianté pour qu'ils ne soient pas écrasés sous le pied des piétons ou par des véhicules;
 - NE PAS déplacer au bulldozer de l'amianté-ciment pour former des tas;
 - NE PAS balayer les débris d'amianté-ciment;
 - évacuer et éliminer les déchets et les débris d'amianté ciment en tant que déchets contaminés par l'amianté.
 - Les gros blocs d’amianté-ciment doivent être évacués en entier et sans les casser ou les séparer. Ils doivent être placés dans une benne recouverte ou dans un camion recouvert, ou ils doivent être enveloppés dans des feuillets de polyéthylène avant leur évacuation.
Les petits débris ou les dépôts de poussière doivent être nettoyés avec un aspirateur type H classification amianté. Les débris de taille trop importante que pour être aspirés doivent être collectés et ensachés en tant que déchets contenant de l'amiante.

7.4.1.3 Les déchets des usines de transformation de l'amiante

Le plan d’action de la décontamination des 3 sites industriels sera mis en œuvre suivant les étapes suivantes :

1. Concertation avec les propriétaires des 3 sites
 - Les exploitants et propriétaires des 3 sites (SICOAC, CIAMIT et EL MAWASSIR) étant responsables de la décontamination de leurs sites respectifs,
 - Des réunions de concertation auront lieu entre l’UGPA (Unité de Gestion du Projet sur les Amiantes) et les représentants de ces entreprises, pour entreprendre la décontamination des sites
 - La concertation devra jeter un contrat programme et un planning détaillé pour la réalisation de la décontamination des sites.

2. Préparation des études d’exécution de décontamination des 3 sites
 - L’étude d’exécution de décontamination
 - L’étude d’impact sur l’Environnement du projet de décontamination, y compris un PGE

3. Travaux de décontamination des 3 sites
 - Approbation des études d’exécution par ANGed, et des EIE par l’ANPE
 - SICOAC, CIAMIT et EL MAWASSIR entameront les travaux de décontamination de leurs sites
 - Le déroulement des travaux sera surveillé par l’ANGed

 - **Coût de dépollution de l’Usine CIAMIT** :

<table>
<thead>
<tr>
<th>Rubrique</th>
<th>Détails</th>
<th>Coût (DTN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etudes de base</td>
<td>- Dossier technique d’exécution</td>
<td>40 000</td>
</tr>
<tr>
<td></td>
<td>- DAO</td>
<td>25 000</td>
</tr>
<tr>
<td></td>
<td>- EIE</td>
<td>20 000</td>
</tr>
<tr>
<td>Décontamination des bâtiments et de leur emprise</td>
<td>- Nettoyage au jet d’eau des bâtiments (sol, mur, cuves)</td>
<td>100 000</td>
</tr>
<tr>
<td></td>
<td>- Nettoyage et curage des bâtiments administratifs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Nettoyage au jet d’eau de l’aire bétonnée</td>
<td></td>
</tr>
<tr>
<td>Décapage des terrains non couverts et des pourtours de la décharge</td>
<td>- Décapage des terrains non couverts de l’usine 23000 + 12000 = 35 000m³</td>
<td>70 000</td>
</tr>
<tr>
<td>Travaux de réaménagement de la décharge existante</td>
<td>- Extension de 5000 m²</td>
<td>30 000</td>
</tr>
<tr>
<td></td>
<td>- Travaux d’enfouissement des nouveaux déchets (3500 m³)</td>
<td>52 500</td>
</tr>
<tr>
<td></td>
<td>- Géomembrane + géotextile</td>
<td>450 000</td>
</tr>
<tr>
<td></td>
<td>- Terre végétale + plantations</td>
<td>108 000</td>
</tr>
<tr>
<td>Revêtement de la voie de circulation</td>
<td>- Revêtement par du tout-venant L= 600 ml</td>
<td>9 000</td>
</tr>
<tr>
<td>Réfection du réseau d’eau pluviale</td>
<td>- Revêtement en béton du caniveau existant</td>
<td>15 000</td>
</tr>
<tr>
<td></td>
<td>- bassin de décantation des boues</td>
<td>10 000</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>929 000</td>
</tr>
</tbody>
</table>

Les actions à mener pour compléter les travaux de 2008 sur l’usine CIAMIT sont comme suit :

- Pour les bâtiments :
 - Décontamination des bâtiments «usine» : curage et lavage des structures à l’eau
 - Curage et lavage des bassins de maturation

COMETE Engineering / PLINIOS SA
• Lavage de la terrasse du bâtiment administratif, récupération et décantation de l’amiante.

• Pour les ouvrages enterrés :
 ✓ Réfection et étanchéification de la conduite des eaux de ruissellement traversant le site.
 ✓ réalisation d’un bassin de décantation (et de dissipation) des eaux de pluies à l’aval hydraulique du site
 ✓ Décapage de la partie située à l’arrière du site (au nord). Existence de résidus de boues entraînées par des inondations
 ✓ Décapage de la partie située plus au sud? Existence de déchets dispersés,
 ✓ Mises en décharge des terres contaminées et déchets d’amiante collectés

• Pour la décharge
 ✓ Enfouissement de déchets complémentaires à décaper sur site
 ✓ Extension (d’environ 5000 m²) prise sur la parcelle de l’usine
 ✓ Déplacement de la clôture grillagée.
 ✓ Décapage de terre végétale de la décharge actuelle
 ✓ Enfouissement des nouveaux déchets collectés
 ✓ Etanchéification de la décharge (couche d’argile compactée ou géomembrane ,)
 ✓ Drainage adéquat des eaux pluviales (géotextile)
 ✓ Recouvrement en terre végétale, plantations pour fixer le sol
 ✓ Déclassement du terrain

• Pour la Gestion des eaux pluviales
 ✓ Revêtement en béton des caniveaux de drainage
 ✓ Réalisation d’un bassin de récupération et de décantation des eaux de pluie en aval hydraulique du site
 ✓ Revêtement des voies de circulation autour de la décharge (tout-venant compacté)
 ✓ Contrôle périodique de l’amiante dans l’eau

- Coût de dépollution de l’Usine MAWASSIR :

<table>
<thead>
<tr>
<th>Rubrique</th>
<th>Détails</th>
<th>Coût (DTN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etudes de base</td>
<td>- Dossier technique d’exécution</td>
<td>55 000</td>
</tr>
<tr>
<td></td>
<td>- DAO</td>
<td>25 000</td>
</tr>
<tr>
<td></td>
<td>- EIE</td>
<td>20 000</td>
</tr>
<tr>
<td>Travaux de replacement de toitures et bardages en amiante ciment</td>
<td>- Toitures et bardages</td>
<td>10 000</td>
</tr>
<tr>
<td>Nettoyage des équipements vétustes au jet d'eau sur plateforme</td>
<td>- Matériel vétuste</td>
<td>20 000</td>
</tr>
<tr>
<td>Curage des terrains non revêtus</td>
<td>- Enlèvement des boues et des rebus et enfouissement</td>
<td>30 000</td>
</tr>
</tbody>
</table>
Les actions à mener pour l’usine MAWASSIR sont comme suit :

- Pour les bâtiments pendant l’exploitation de l’usine, il est recommandé de limiter l’accumulation des boues et poussières dans les installations, les caniveaux, les fosses,…
- Pour le bâtiment après l’exploitation :
 - Stocks invendus et résidus de fabrication seront mis en décharge
 - Décontamination des bâtiments avec démantèlement des installations de fabrication (décapage à l’eau sous pression)
 - Récupération des eaux et décantation de l’amiante
 - Les boues d’amiante seront mises dans la décharge
- Pour le Process :
 - Démantèlement des installations industrielles et lavage intensif à l’eau sous haute pression
 - Récupération des eaux et élimination de l’amiante décantée
 - Matériels vétustes à décontaminer sur plateforme aménagée
 - Démontage et découpage des installations existantes
 - Les ferrailles parfaitement décontaminées peuvent être recyclées
 - Curage des bassins de maturation et fosses de mise en eau.
- Pour les ouvrages extérieurs :
 - Utilisables pendant et après exploitation pour décanter eaux et boues issues du lavage et de la décontamination des bâtiments du process et des matériels
 - Ils doivent être gardés en eaux en permanence et être curés en fin d’exploitation
 - A la remise en état, deux des trois bassins et un caniveau les reliant à l’usine peuvent être curés et lavés, puis démoli; leurs résidus contaminés doivent être mis en décharge.
 - Cette cuve située au sud-est de l’usine, difficile à décontaminer, sera démolie à l’aide d’engin sous aspersion d’eau ; les gravats seront directement mis en décharge
 - Les espaces contaminés déchets, poussières, boues d’amiante) seront nettoyés puis décapés en humide sur une profondeur suffisante (10 cm x 85 000 m² = 8500 m³ terres souillées).
 - Les espaces non revêtus, utilisés pour l’expédition/livraison et pour l’enlèvement des boues de curage de bassins, seront décapés, recouverts d’asphalte et munis de caniveaux pour la récupération des eaux de lavage.
 - La route d’accès sera prolongée vers la décharge située en amont
- Pour la décharge :
Maintint et réaménagement de la décharge in situ
- Extension de la décharge actuelle de 10 000 m³, pour accueillir les nouveaux déchets (de 40 000 m³ à 50 000 m³).
- Réalisation d’ouvrages de soutènement en aval hydraulique devront assurer la stabilité géotechnique
- Récupération des eaux d’infiltration
- Réalisation d’une barrière au vent afin de limiter l’envol des poussières
- Canalisation de l’oued : L’oued traversant la décharge sera protégé et canalisé sous la décharge
- Remaniement du stock de déchets
- Le stock sera trié selon la nature des composants (machinerie vétuste, amiante ciment, ...)
- Le matériel vétuste sera nettoyé sur une plateforme aménagée

- **Coût de dépollution de l’usine SICOAC :**

<table>
<thead>
<tr>
<th>Rubrique</th>
<th>Détails</th>
<th>Coût (DTN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etudes de base</td>
<td>- Dossier technique d’exécution</td>
<td>50 000</td>
</tr>
<tr>
<td></td>
<td>- DAO</td>
<td>25 000</td>
</tr>
<tr>
<td></td>
<td>- EIE</td>
<td>15 000</td>
</tr>
<tr>
<td>Travaux de replacement de toitures en amiance</td>
<td>- Toitures et bardages</td>
<td>5 000</td>
</tr>
<tr>
<td>Travaux de curage</td>
<td>- Curage des bassins</td>
<td>5 000</td>
</tr>
<tr>
<td></td>
<td>- Curage des aires bétonnées</td>
<td>10 000</td>
</tr>
<tr>
<td>Décapage des terrains non couverts</td>
<td>- Décapage des terrains (15000 m³)</td>
<td>30 000</td>
</tr>
<tr>
<td></td>
<td>- Transport des produits vers le terrain annexe</td>
<td>30 000</td>
</tr>
<tr>
<td>Acquisition d’un terrain pour la décharge</td>
<td>- Ancienne carrière d’argile</td>
<td>100 000</td>
</tr>
<tr>
<td>Travaux d’aménagement de la décharge ex situ</td>
<td>- Travaux de terrassement et de génie civil</td>
<td>150 000</td>
</tr>
<tr>
<td></td>
<td>- Géomembrane + textile</td>
<td>220 000</td>
</tr>
<tr>
<td></td>
<td>- Terre végétale + plantations</td>
<td>120 000</td>
</tr>
<tr>
<td>Evacuation des déchets vers la décharge ex situ</td>
<td>- Transport des déchets (45 000 m³ x 10 dt)</td>
<td>675 000</td>
</tr>
<tr>
<td></td>
<td>- Enfouissement des déchets (45 000 x 6 dt)</td>
<td>270 000</td>
</tr>
<tr>
<td>Gestion des eaux pluviales</td>
<td>- Réseau d’eaux pluviales</td>
<td>25 000</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>1 730 000</td>
</tr>
</tbody>
</table>

Les actions à mener pour l’usine SICOAC sont comme suit :

- Pour les Terrains non couverts et pendant l’exploitation de l’usine, on procède au revêtement de ces surfaces, et réalisation d’ouvrages de collecte des eaux de ruissellement dans un bassin de décantation
- Après l’exploitation et avant une réutilisation il est nécessaire de réaliser une purge de leurs déchets, à disposer dans la décharge destinée à les accueillir
- Tous les produits de dépollution seront disposés dans une décharge ex situ, à créer.
- Les actions suivantes devront être effectuées :
 - Recherche et acquisition d’un terrain de décharge (2 ha environ)
 - Aménagement d’une décharge future, destinée aux déchets d’amiante
 - Enlèvement et transport des déchets actuels stockés sur le terrain annexe
Enfouissement des déchets dans la nouvelle décharge
Travaux de fermeture
Suivi environnemental de la décharge

7.4.1.4 L’amiante dans les bâtiments privés :

Cette quantité n’a pas pu être évaluée vu le manque de données et l’éparpillement possible de l’amiante dans une variété de bâtiments à l’échelle du Pays.

Si les membres du COPIL réunis au cours de la présentation des résultats de la deuxième phase du projet, ont vu que l’instauration du certificat “bien exempt d’amiante” n’est pas nécessaire, voyant que les résultats des inspections d’un échantillon de lieux inspectés au cours de la première phase de ce projet, n’ont pas montré de cas de contamination des lieux en dehors de ceux des usines de transformation de l’amiante. Néanmoins, nous constatons :

(1) que le fait que l’amiante utilisée en Tunisie est généralement sous forme d’amiante ciment, ce qui représente un produit stabilisé, n’exclut pas une contamination manifeste passagère mais certainement très dangereuse en cas de bris d’amiante ciment lors de manutention, de réfection, de démolition, etc., de bâtiments,

(2) la dispersion des produits en AC à l’échelle du pays notamment comme matériaux pratiques pour la construction des toitures, de canalisations de VRD, etc., mais aussi cette cohabitation toute usuelle, pourtant trop malsaine de l’homme avec l’amiante, ne permet pas de se prononcer définitivement sur la gravité du danger et des risques associés à ces produits dangereux.

C’est bien pour ces raisons que nous proposons d’instaurer le certificat “Bien exempt d’amiante”. Ce certificat sera d’une grande utilité en cas de session de propriété pour quelque motif que ce soit, de demande de travaux d’extension, de démolition de bâtiments, etc.

Ce type de certificat peut être délivré suite à une inspection effectuée par un spécialiste dans le domaine de la reconnaissance de l’amiante sur les lieux, document qui peut être recommandé (au choix) par les instances concernées (Municipalité) lors de demande d’autorisation d’extension, de bâtir ou de démolition, celles concernées par le transport des matériaux banals de construction vers les lieux de décharge, et par les instances concernées par le changement de propriété et de l’immatriculation foncière.

7.4.1.5 Récapitulatif

Il faudra remarquer néanmoins qu’au cours de la présentation des résultats de la deuxième phase de ce projet devant la COPIL, des suggestions faites par les membres de l’Équipe du Projet et ceux du COPIL amènent à réviser à la baisse, les quantités de déchets projetées sur les années à venir. Ainsi, dans le cas des organismes gros consommateurs de conduites en AC, il a été préconisé :

1. Une poursuite de l’utilisation des conduites restant en stocks sur les parcs de ces organismes moyennant leur badigeonnage et l’application de règles de sécurité nécessaires pour leur utilisation pour le remplacement jusqu’à épuisements définitifs de ces stocks et passage à l’usage de conduits de nouvelle génération à substituts d’amiante (exempts d’amiante). Ceci permettra d’enterrer définitivement les conduites existantes et d’éviter d’une part le manque à gagner de ces organismes quant à l’utilisation de ces stocks de conduits, et de parer au manque à gagner supplémentaire et dépenses qui résulteraient des opérations nécessaires pour la mise en décharge de ces conduites par suite d’interdiction d’usage de l’amiante, d’autant plus qu’il s’agit de quantités colossales. La partie apparente des réseaux doit aussi être obligatoirement manutentionnée, entretenue et surtout badigeonnée pour éviter les risques de contamination.

2. Pour ce qui est des déchets générés lors d’avaries, il a été recommandé de laisser les déchets enterrés (conduites avariées) sur place aux côtés des réseaux de conduites en AC pour éviter toute
production de ce type de déchets à partir des réseaux existants et donc de réduire quasi-totalement les quantités de déchets qui seront générés et nécessitant une mise obligatoire en décharge de produits dangereux à l’avenir. Cette procédure permettra de réduire considérablement et définitivement la plus grande quantité de déchets en amianté à l’échelle du Pays. Il peut aussi le cas échéant être envisagé, dès que possible, de contourner définitivement les réseaux en amianté existants pour les remplacer par des conduites nouvelles génération sans amianté.

3. Le fait que les conduites en amianté ciment disponibles en stocks sur les parcs de l’ONAS et qui semblent convenir mal pour l’usage de l’assainissement pour des raisons de corrosion marquée, il a été recommandé un échange, ou une reprise de ces conduites qui seront à badigeonner, par la SONEDE ou par les CRDAs pour leur usage et donc leur enterrément définitif jusqu’à terme d’usage des stocks (cas n°1 plus haut).

Ces suggestions bien justifiées amènent à réviser à la baisse les quantités de déchets d’amianté qui seront produits à l’avenir à l’échelle du pays, et de ce fait les déchets et produits en AC qui étaient escomptés à être mis en décharge (déchets et conduites en stocks ; voir tableau précédent) seront de toute évidence évités.

Seuls demeurent donc à être considérés les déchets en amianté ciment produits par l’assainissement des usines (650 tonnes au total), les déchets de SICOAC et d’El Mawassir dont l’élimination a été abordée dans notre étude, et les déchets en amianté ciment qui seront à enlever tout au plus partiellement à partir des divers établissements publics à l’échelle du Pays (soit 5637 tonnes).

A ces quantités, l’on devrait ajouter les déchets qui seraient à produire à partir des bâtiments privés, cependant même ces dernières quantités n’ont pas pu être estimées, elles ne devraient pas dépasser 2000 tonnes.

A un rythme de 800 tonnes par an, la quantité maximale totale probable de déchets des bâtiments (public et privé) ainsi que les déchets des usines, qui est de 8287 tonnes, sera totalement ré sorbée en 10 années successives.

* Ces quantités ne peuvent donc pas justifier la création de plusieurs décharges de produits dangereux d’amianté. Une seule décharge commune pour tout le pays peut donc résorber l’ensemble des déchets. Elle pourra occuper une position centrale dans le pays où tous les déchets seront transportés et éliminés. De même ces quantités de déchets ne nécessitent pratiquement pas trop de mesures particulières pour la réussite de l’action, sa programmation et son suivi au moyen et long termes autres que celles qui seront intégrés dans la formation des équipes et opérateurs qui auront la responsabilité de la gestion des déchets d’amianté depuis son enlèvement jusqu’à sa mise en décharge définitive.

Ainsi, tout en étant sûr qu’une partie des conduits, utilitaires et toitures en amianté ciment (usines en charpente métallique par exemple) serait maintenue sur place avec l’entretien et la manutention adéquate nécessaires, il est pratiquement évident que même si l’on considère en plus les déchets à produire par le secteur privé, les quantités totales de déchets qui seront produits sur la prochaine, ou sur les deux prochaines décennies ne dépasseraient pas les quantités annuelles qui viennent d’être évoquées. De plus, ces quantités justifient clairement l’exiguité du marché pour les entreprises et filières d’élimination de l’amianté qui sont prévues pour création dans le cadre de ce projet. C’est aussi pourquoi nous avons déjà proposé dans le chapitre précédent de penser à créer des entreprises et des filières de dépollution multidisciplinaires qui peuvent être amenées à intervenir pour l’élimination de ces quantités somme toute assez réduite de déchets en amianté ciment qui ne peuvent pas les occuper plus qu’une ou deux décennie, ce qui est trop court pour la vie d’une société qui est généralement créée pour une période légale de 99 ans. La diversification de l’activité de ces opérateurs aidera à la survie de ces entreprises qui seront spécialisées et multidisciplinaires dans la dépollution.
7.4.2 Actions et filières à mettre en place pour renforcer la gestion des déchets d’amiante

Le démarrage et le renforcement de la gestion des produits et déchets d’amiante venant à être interdits, nécessitent une suite d’actions à mettre en place et des structures d’intervention, de contrôle et de suivi des différentes opérations depuis l’identification de l’amiante sur place jusqu’à son élimination définitive dans une décharge autorisée. Dans le détail nous pouvons proposer ce qui suit :

2. La formation d’équipes spécialisées dans le contrôle et l’inspection des lieux pour la reconnaissance de l’amiante notamment dans les bâtiments publics ou privés.

3. La formation de laboratoires spécialisés pour les mesures de contamination de l’ambiance par l’amiante et dans l’identification des catégories d’amiante au Laboratoire tout en disposant des moyens adéquats pour cette reconnaissance.

4. La formation d’équipes spécialisées pour l’enlèvement de l’amiante et son conditionnement en tant que déchets dangereux prêts à l’enlèvement et à l’élimination en décharge de produits dangereux.

5. La formation d’opérateurs spécialisés pour la reconnaissance de sites de décharges, la construction de ce type de décharge de produits dangereux, les opérations de mise en décharge, et le suivi au moyen et long terme de décharges de produits et déchets d’amiante.

6. Notons aussi que la pratique de décharges non apparentes avec récupération du terrain de décharge pour d’autres usages comme proposé dans cette étude permettra de réduire considérablement les dépenses de suivi et surtout les risques d’un nouvel éparpillement de l’amiante mise en décharge.

Pour ces différentes formations et créations il est de même nécessaire de penser à l’exigüité du marché “déchets d’amiante à éliminer”.

Diagramme récapitulatif des étapes du plan d'action :

- Validation du texte de loi et sa mise en vigueur
- Former le comité de suivi
- Contrôle, suivi et assistance
- Choix de site du CET
- Lancement des AO pour les études et l’aménagement du CET

Les 3 usines de transformation
- Formation et sensibilisation des responsables et des ouvriers
- Lancement des études de dépollution
- Lancement des travaux de désamiantage
- Enfouissement des déchets amiantés sur site

Gros consommateurs des conduites
- Formation et sensibilisation des responsables et des employés par site de stockage
- Lancement des études de dépollution par site
- Lancement des AO pour l’aménagement des espaces de stockage, entretien des stocks et enfouissement des débris sur site

Les bâtiments
- Formation et sensibilisation des responsables et des occupants des bâtiments contenant de l’amiante (par ministère)
- Lancement des études de dépollution par ministère (diagnostique + localisation + quantification)
- Lancement des AO pour les travaux de désamiantage
- Désamiantage et transport des déchets amiantés vers le CET
7.4.3 Sensibilisation, études de faisabilité du désamiantage et formation

Les coûts globaux de l’ensemble de ces actions et procédures de formation de cadres, d’équipes et d’opérateurs spécialisés, mais aussi les opérations d’enlèvement, de transport et d’élimination des déchets d’amiante dans des décharges in situ dans les usines et une décharge ex-situ commune de déchets d’amiante pour tout le pays (amiante des Ministères concernés), peuvent être estimés comme suit.

Tableau 7-3. Dépenses pour la sensibilisation, les études de faisabilité du désamiantage et pour la formation

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>COÛT TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programme de sensibilisation</td>
<td>200.000</td>
</tr>
<tr>
<td>Formation du personnel de contrôle et de travaux (20 personnes)</td>
<td>100.000</td>
</tr>
<tr>
<td>Campagne de contrôle et de mesures sur terrain</td>
<td>150.000</td>
</tr>
<tr>
<td>Etudes de reconnaissance de sites amiantés et BD</td>
<td>100.000</td>
</tr>
<tr>
<td>TOTAL en Dinars</td>
<td>550.000</td>
</tr>
</tbody>
</table>

7.4.4 Désamiantage et mise en décharge de l’amiante

Les coûts globaux de l’ensemble de ces actions et procédures de formation de cadres, d’équipes et d’opérateurs spécialisés, mais aussi les opérations d’enlèvement, de transport et d’élimination des déchets d’amiante dans des décharges in situ dans les usines et une décharge ex-situ commune de déchets d’amiante pour tout le pays, peuvent être estimés comme suit.

L’estimation de ces coûts est basée sur les données de l’étude 2008 pour l’assainissement des usines de transformation de l’amiante effectuée par le MEDD, sur l’estimation des prix de terrain destiné pour une nouvelle décharge, et sur les coûts de facteurs (travaux, transport, géotextiles, équipements, etc.)

Tableau 7-4. Dépenses de création d’une décharge commune ex-situ pour l’ensemble des déchets d’amiante à l’échelle du pays

<table>
<thead>
<tr>
<th>DESCRIPTION</th>
<th>COÛT PAR UNITE</th>
<th>COÛT TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frais d’achat de terrain 2ha</td>
<td>100.000</td>
<td>200.000</td>
</tr>
<tr>
<td>Clôture et local administratif (30m²)</td>
<td>200.000</td>
<td>200.000</td>
</tr>
<tr>
<td>Dépenses d’aménagement (excavation L'H= 4030*5 ; densité 2.2)</td>
<td>5</td>
<td>100.000</td>
</tr>
<tr>
<td>Géotextile (5000 m²)</td>
<td>50 000</td>
<td>200.000</td>
</tr>
<tr>
<td>Frais de construction de la décharge</td>
<td>Forfait</td>
<td>700.000</td>
</tr>
<tr>
<td>Coûts d’études et d’appareillages de mesures</td>
<td></td>
<td>150.000</td>
</tr>
<tr>
<td>TOTAL en dinars</td>
<td></td>
<td>1 550 000</td>
</tr>
</tbody>
</table>

7.5 Mécanismes de financement

Le raisonnement qui suit doit tenir compte du principe “pollueur-payeur”. Dès lors aucune taxation ne peut être supportée par les citoyens.

Pour les organismes à caractère commercial (ONAS, SONEDE), tous frais d’entretien ou de réfection de réseau, ou toute nécessité de mise en décharge de quelques déchets que ce soient peuvent être reportés sur les frais d’exploitation et donc inclus dans la facturation des services de ces organismes vis-à-vis des pris en charge concernés.

Pour les organismes publics (CRDA, DGACTA, DGBTH), tous frais d’entretien ou de réfection de réseau, ou toute nécessité de mise en décharge de quelques déchets que ce soient peuvent être inclus dans les budgets annuels réservés à ces organismes. Ces frais seront donc somme toute supportés par l’Etat.

Pour le désamiantage des bâtiments publics et pour les frais de formation des cadres, la somme totale sur les dix ou 20 prochaines années apparait quelque peu non exorbitante et peut être reportées sur les budgets alloués annuellement aux différents ministères concernés.
Pour les deux usines El Mawassir et SICOAC les frais des études, du désamiantage et de la mise en décharge seront à la charge de ces deux sociétés compte tenu du principe “pollueur payeur” évoqué précédemment.

Les clauses prévues dans le cadre du Code d’incitation aux investissements, et les fonds alloués au FODEP seront de recours pour le financement des filières et sociétés opératrices qui seront à créer dans le cadre du projet global de désamiantage.

Les ressources financières, les modalités d’allocation de l’aide au désamiantage et l’octroi de cette aide aux différents concernés peuvent être gérés par le Ministère chargé de l’environnement sur étude cas par cas des dossiers de faisabilité de l’action de désamiantage sur avis du UGPA de Suivi du désamiantage présenté précédemment.

7.6 Suivi au long terme

Il est sûr que l’UGPA instauré ne peut pas suivre à lui seul toutes les actions de désamiantage engagées surtout après la troisième année de mise en œuvre du Plan d’Action. L’UGPA devra se faire assister par l’ANPE, l’ANGed, mais aussi des spécialistes bien formés qui assureront l’échantillonnage et les mesures sur terrain, et les identifications de laboratoire pour s’assurer de la bonne conduite de l’action et que les décharges d’élimination de l’amiante soient exécutées dans les règles de l’art et sécurisées.

- Mise en place d’une Unité de Gestion du Projet Amiante (UGPA) « amiante » au sein du MEDD

Comme pour tout plan d’action, il est nécessaire de mettre en place une unité de gestion, appelée « UGPA », qui sera chargée de la mise en œuvre de ce plan

- L’UGPA, présidé par un représentant du Ministre de l’EDD, comprendra les représentants de diverses parties prenantes à ce plan; notamment :
 - un représentant de l’ANPE, de l’ANGed, du CITET
 - un représentant de MIEPME
 - un représentant du Ministère de la Santé Publique (DHMPE)
 - Un représentant de l’ANCSEP
 - un représentant du Ministère des Affaires Sociales, de la Solidarité et des Tunisiens à l’Etranger
 - un représentant de l’UTICA

Une « commission amiante », pourrait aussi être constituée (UGPA Elargi), comprenant, outre les membres du comité, les représentants :

- du Ministère du commerce
- du Ministère de l’Intérieur et du Développement Local
- du Ministère de l’Equipement, de l’Habitat et de l’Aménagement du Territoire
- de la Douane
- des gouvernorats

7.7 Mesures d’accompagnement

Toutes les dispositions doivent être prises pour que les travaux s’effectuent avec les règles les plus strictes de sécurité des intervenants sur chantier, et que les riverains ne soient nullement empoisonnés par l’amiante en cours de travaux ou après mise en décharge de l’amiante. Il est aussi impératif de surveiller tout risque d’émanation d’amiante dans les réseaux hydrographiques. Toute anomalie doit faire l’objet d’une étude et d’une action de réparation.

De point de vue sanitaire, un suivi des cas de maladie causée par l’inhalation ou la manipulation des amiantes doit être enregistré dans un registre de suivi et prévoir une procédure spécifique pour les prendre en charge. Pour cette mission c’est la DHMPE qui sera responsable (Direction de l’hygiène et de la protection des Milieux – Tutelle du ministère de la santé publique) avec l’assistance du UGPA de mise en œuvre du plan d’action et l’institut de santé de travail.

COMETE Engineering / PLINIOS SA
Récapitulatif des coûts de mise en œuvre du plan d’action

<table>
<thead>
<tr>
<th>Catégorie</th>
<th>Quantités déchets actuelles (tonnes)</th>
<th>Coût de gestion (DT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organismes gros consommateurs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SONEDE</td>
<td>890</td>
<td>62 300</td>
</tr>
<tr>
<td>ONAS</td>
<td>5 200</td>
<td>14 000</td>
</tr>
<tr>
<td>CRDA</td>
<td>2 000</td>
<td>364 000</td>
</tr>
<tr>
<td>Bâtiments publics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ministère de l’Education et de l’Enseignement</td>
<td>523</td>
<td>209 039</td>
</tr>
<tr>
<td>Ministère de l’Agriculture</td>
<td>1 982</td>
<td>792 840</td>
</tr>
<tr>
<td>Ministère de l’Equipement et de l’Environnement</td>
<td>19</td>
<td>7 460</td>
</tr>
<tr>
<td>Ministère de transport</td>
<td>527</td>
<td>210 700</td>
</tr>
<tr>
<td>Ministère de l’Intérieur et de Développement locale</td>
<td>1 897</td>
<td>758 960</td>
</tr>
<tr>
<td>Ministère de la santé publique</td>
<td>689</td>
<td>275 500</td>
</tr>
<tr>
<td>Bâtiments privés</td>
<td>2 000</td>
<td></td>
</tr>
<tr>
<td>Usines de transformation</td>
<td>650</td>
<td>2 659 000</td>
</tr>
<tr>
<td>MAWASSIR</td>
<td>200</td>
<td>1 268 000</td>
</tr>
<tr>
<td>SICOAC</td>
<td>200</td>
<td>1 730 000</td>
</tr>
<tr>
<td>CIAMIT</td>
<td>250</td>
<td>929 000</td>
</tr>
<tr>
<td>Centre d’Enfouissement Technique</td>
<td></td>
<td>1 550 000</td>
</tr>
<tr>
<td>Mesures d’accompagnement</td>
<td></td>
<td>450 000</td>
</tr>
<tr>
<td>DEPENSES SUR LA SENSIBILISATION, FORMATION ET ANALYSES</td>
<td></td>
<td>550 000</td>
</tr>
<tr>
<td>Total</td>
<td>16 377</td>
<td>9 595 200</td>
</tr>
</tbody>
</table>
8 Plan d’Action Global pour le Desamiantage

Il faut noter qu’un plan d’action pour le désamiantage des trios sites industriels SICOAC, CIAMIT et El MAWASSIR, a été proposé dans l’étude 2008. Ce plan peut être repris et développé pour étendre l’action à une échelle nationale. Dans son essence, cette action doit reposer sur le principe pollueur-payeur énoncé par la loi, car nul ne peut dégager sa responsabilité ni pour avoir participé directement ou indirectement à l’éparpillement du fléau amianté à l’échelle du Pays, ni de la nécessité de sa contribution conséquente à le combattre pour l’éradiquer au moyen et long terme.

Le plan d’action proposé dans ce rapport prend en considération un nombre de points clés pour garantir l’harmonisation et la réussite de l’action :

- Création d’une Unité de Gestion du Projet Amiante pour l’encouragent et le suivi au désamiantage,
- Préparation du cadre institutionnel et réglementaire,
- Etude technico-économique et création d’un fond national de désamiantage,
- Mission nationale d’identification et de caractérisation des lieux et des biens contaminés par les produits et les déchets contenant de l’amiante,
- Programme de sensibilisation du public aux dangers de l’amiante,
- Programme de sensibilisation des organismes gros consommateurs d’amiante-ciment et actions à entreprendre
- Programme de formation aux techniques d’identification de l’amiante, de techniques et travaux de désamiantage, et à la dépollution des lieux et des bâtiments contaminés par l’amiante,
- Programme de formation aux études de faisabilité et aux techniques d’exécution de décharges de produits amiantés,
- Programme de formation aux mesures de contrôle de la qualité de l’air dans les lieux soupçonnés être contaminés par l’amiante,
- Coût global et coûts estimatifs des différentes composantes du plan d’action.

8.1 Création d’une Unité de Gestion du Projet Amiante (UGPA)

La réussite du plan d’action à une échelle nationale nécessite de faire appel à tous les partenaires impliqués dans cette action. Dès lors, cette unité ne peut donc qu’être interministériel, avec une participation efficace de membres représentant chacun des ministères et chacune des institutions suivantes :

- Ministère de la Santé Publique,
- Ministère de l’Agriculture, des Ressources Hydrauliques et de la Pêche,
- Ministère chargé de l’Environnement,
- Ministère de l’Intérieur,
- Ministère de l’Industrie
- Ministère chargé de l’Equipement et de l’habitat,
- Ministère chargé du Commerce,
- Ministère chargé du travail,
- Ministère chargé de la Recherche Scientifique,
- Agence Nationale de Protection de l’Environnement,
- Agence Nationale de Gestion des Déchets,
- Société Nationale de Distribution des Eaux,
- Office National de l’Assainissement,
- Douanes Tunisiennes
- Union Tunisienne de l’Industrie, du Commerce et de l’Artisanat,
- Organisations Non-Gouvernementales actives dans le domaine de l’Environnement et de la Santé Publique.

L’UGPA peut être présidé par l’un des membres relevant du Ministère chargé de l’environnement (l’ANGEd par exemple). Il a la mission d’assurer la continuité de l’action, son évaluation, le suivi des études, le contrôle des travaux de désamiantage et de mise en décharge, le suivi des actions de formation, et les décisions quant à l’allocation des fonds de désamiantage, s’il y a lieu.

8.2 Préparation du cadre institutionnel et réglementaire

Pour la réussite du plan d’action, il est nécessaire d’adopter le cadre institutionnel et réglementaire nécessaire. L’UGPA proposée doit alors :

- définir les rôles et veiller aux responsabilités mutuelles des différentes institutions concernées et à l’harmonie de leurs actions,
- veiller à l’harmonie des textes de lois, à leur adoption et à leur application dans le domaine,

8.3 Étude technico-économique et création possible d’un Fonds de Désamiantage National

Nous avons avancé que la condition première de conduite de cette action est de procéder à des études de dépollution et d’impact sur l’environnement de tous travaux de désamiantage. En plus des données déjà disponibles sur les sites industriels, celles concernant les organismes gros consommateurs d’amiante (SONEDE, ONAS, CRDAs, DGBTH, Ministère chargé de l’Agriculture pour les périmètres irrigués), et celles déjà disponibles du Ministère chargé du Commerce, ces études mettront au clair rapidement l’envergure de l’action. Dès le démarrage, une étude technico-économique s’impose pour la meilleure réussite du plan d’action, sur la base de données et de quantitatifs de déchets et produits amiantés précis par Ministère, par gouvernorat, par district, etc. Il devient alors possible d’évaluer définitivement le coût de l’action à moyen et long termes.

L’application du principe pollueur-payeur peut ramener les frais du désamiantage sur le compte de l’organisme concerné surtout pour les gros consommateurs de produits à base d’amiante. Dans ce cas une solution doit être adoptée par la commission nationale pour la compensation du coût de désamiantage que ce soit par voie de tarification ou par l’allocation de fonds qui demeurent à définir et à rechercher.

Pour les organismes et le public privé, mais aussi pour les établissements publics (hôpitaux, dispensaires, écoles, et autres lieux publics etc.) le problème est plus compliqué. Recommender le certificat de “bien exempt d’amiante” à la vente, à la réfection ou à la démolition de bâtiment apportera une solution en amont qui incite l’organisme ou le privé dans une certaine mesure à prendre à sa propre charge l’action de désamiantage concernant son bien. Néanmoins, il serait utile de penser à une compensation par voie de
fonds national de désamiantage, sachant bien que le nombre de lieux contaminés par l’amiante dans cette catégorie n’est apparemment pas considérablement élevé d’après les résultats de la première phase de ce travail.

Le fonds de désamiantage nécessite en lui-même une loi à l’instar de plusieurs autres fonds comme celui de la maitrise et de l’économie de l’énergie en 2004. Les mêmes principes peuvent donc être suivis pour la création de ce fond de désamiantage.

8.4 Mission nationale d’identification et de caractérisation des lieux et des biens pollués par les produits et les déchets contenant de l’amiante,

Cette mission peut se faire par voie de sensibilisation médiatique à l’échelle du public, mais aussi par voie d’échange d’informations détaillées à demander par la commission nationale, à suivre et à acquérir définitivement en amont auprès de chacun des Ministères, chacun des industriels de l’amiante, et chacun des organismes gros consommateurs de produits amiantés.

A la lumière de ces données intégrées dans une base de données nationale, des missions de caractérisation du danger amianté peuvent être lancées sur les lieux par ordre de gravité du risque d’exposition du citoyen. C’est à la lumière de ces missions que des recommandations précises seront données, que des études de faisabilité de dépollution et des études d’impact sur l’environnement de l’opération de désamiantage seront effectuées, et que les solutions peuvent alors être apportées au cas par cas et non autrement, à chacun des lieux de la responsabilité de ceux qui peuvent s’avérer les plus concernés par ce plan d’action.

Dans le cas de création de fonds d’encouragement pour le désamiantage, les résultats de la mission de caractérisation de l’étendue de la pollution et de l’envergure des travaux nécessaires pour le désamiantage permettront d’évaluer la somme à allouer à qui de droit, sur décision de la Commission Nationale et sur avis des organismes chargés du contrôle de la qualité de l’environnement (ANGeD et ANPE).

8.5 Programme d’études et de sensibilisation aux dangers de l’amiante,

8.5.1 Action globale

Ce programme peut être mené par différentes voies de campagnes, de séminaires, de conférences, de publicité, de workshops, de web, de télévision, de radios durant les années à venir. Doivent être touchées toutes les franges de la population pour les sensibiliser aux dangers de l’amiante et à la nécessité de l’éradiquer définitivement pour garantir la santé des générations.

En particulier, un programme de séminaires touchant aux informations de base sur l’amiante (nature et origine des matériaux, leurs propriétés, leurs usages, leurs types de produits, la position historique de divers pays pour les éradiquer, les maladies engendrées par l’amiante, etc.) dans les écoles, les universités, les ministères, les chambres de commerce et d’industrie, de travail, etc., sont les mieux désignés et doivent être tenus durant les deux premières années de mise en route de ce plan d’action.

8.5.2 Immeubles bâtis publics

Il est suggéré la mise en œuvre progressive d’un programme d’étude de l’amiante, par le biais d’échantillonnages et d’analyses des bâtiments publics, avec une grande importance pour les lieux de santé publique comme les hôpitaux, pour les écoles, les ports, les aéroports, les bâtiments de services publics, etc. Le programme d’étude de l’amiante peut avoir une durée de 7 ans.

Les enquêtes doivent être effectuées par un personnel et des entreprises indépendants et spécialisés, avec une expérience adéquate dans ce secteur, détenant possiblement une accréditation ISO 17025 pour l’échantillonnage et l’analyse de l’amiante, pour assurer un maximum de fiabilité des résultats.

D’après les résultats des audits et de leur évaluation, il est suggéré une mise en œuvre progressive d’un programme de désamiantage. Ce programme peut durer 15 ans.
Les travaux de désamiantage doivent être effectués par un entrepreneur de désamiantage doté d’une licence complète et spécialisée en appliquant toutes les méthodes et les mesures de sécurité qui sont nécessaires sur la base de la législation à adopter, et le cas échéant, sur la base de la législation européenne et Standards de Meilleures Pratiques dans le domaine.

8.5.3 Programme de sensibilisation des organismes gros consommateurs et actions

8.5.3.1 SONEDE, ONAS, CRDAs et Ministère chargé de l’Agriculture

Selon les conclusions et les résultats de la phase 1, surtout la SONEDE et l’ONAS disposent d’une énorme quantité de produits en cours d’usage et de stocks de tuyaux en amianté-ciment accumulés dans leurs propres locaux. Il doit en être de même dans les autres organismes. Ces tuyaux et des déchets d’amianté peuvent être proposés pour mise dans un CET d’amianté qui sera construit au sein de leurs locaux (in situ) ou d’une autre zone qui sera proposée par les concernés sur étude dépollution et PGE/PS y afférents.

Pour cette raison, une étude d’évaluation d’impact environnemental et une étude de faisabilité de la dépollution devraient être mises en œuvre immédiatement pour rechercher la solution adéquate, et pour la construction éventuelle dudit CET nécessaire pour l’élimination des déchets et la préservation puis utilisation des tuyaux stockés.

Toutes les études doivent être soumises à l’approbation et à l’octroi d’autorisation de l’organisme national compétent (par exemple le Ministère de l’Environnement, Ministère de l’Industrie, etc.), un an après la notification des mesures nécessaires à entreprendre.

Suite à ces autorisations par les autorités nationales, de la Commission de Désamiantage et avis de l’ANPE et de l’ANGEd sur la base d’études dument accomplis, les propriétaires des locaux doivent avoir terminé toutes les études requises par les travaux d’études de construction et d’élimination des déchets dans une période de deux ans sous la supervision des autorités.

En ce qui concerne le réseau de canalisations souterraines, il serait fastidieux de penser à conduire une action de déterrement de conduites fonctionnelles. Quant au devenir de ces conduites au moyen et long terme, l’entretien et les réparations du réseau d’approvisionnement en eau de la SONEDE, du réseau ONAS, des réseaux d’Irrigation, de drainage, etc., en amianté-ciment, il est recommandé de contourner le réseau dès que possible, de laisser les conduites amiantées enterrées, et de construire un nouveau avec des matériaux non-amiantés.

Aussi, en cas de nécessité d’intervention locale sur les réseaux de canalisations, il est nécessaire de prendre toutes les mesures de sécurité et de protection du personnel (masques, des uniformes, des bonnes pratiques etc.) nécessaires.

8.5.3.2 El Mawassir, SICOAC et CIAMIT

Selon les conclusions et les résultats de la phase 1 sur les locaux qui destinés à l’usinage de l’amianté-ciment de El Mawassir, SICOAC et CIAMIT, les situations des sites sont classées comme à haut risque. Il est donc impératif que ces sociétés entreprennent immédiatement toutes les études de dépollution et d’impact sur l’environnement de l’action de désamiantage. Aussi, les conditions appropriées de travail en milieu amianté doivent urgemment être mises en application.

La décontamination et l’élimination de l’amiante de ces locaux doivent être effectués par une entreprise disposant d’une licence complète et spécialisée “entrepreneur pour le retrait de l’amiante” en appliquant toutes les méthodes pratiques y afférentes sous contrôle de qui d’autorité.

8.5.4 Programmes de formation

Ce programme devra être conduit à deux niveaux :

Formation de spécialistes pour l’identification, les mesures et le contrôle des produits amiantés

Cette formation ne peut être assurée que par l’Université agréée à octroyer des diplômes nationaux, ou par une formation en commun entre un organisme relevant de la santé ou de l’environnement et
l’Université sur avis de la commission nationale de désamiantage. Notons dans tous les cas que les deux organismes ANGeD et ANPE représentant légal de l’autorité en la matière, ne doivent en aucun cas être impliquées dans cette formation et la délivrance de ce type de diplômes.

Formation pour les opérations d’enlèvement et de mise en décharge de l’amiante

Cette formation englobera les volets suivants :

- Les mesures, les actions et les précautions à entreprendre lors de travail en milieu contenant des produits amiantés ou contaminé par l’amiante,
- Les techniques de stabilisation et de sécurisation des produits amiantés sur place en cas de difficulté d’enlèvement,
- Les techniques de désamiantage et de dépollution des sites contaminés par l’amiante,
- La gestion des déchets d’amiante et leur substitution par des déchets non amiantés,

Là encore cette formation doit être assurée conjointement entre l’Université et un organisme relevant du Ministère chargé de l’environnement ou de la santé, sous le regard de la commission nationale de désamiantage.

Cette formation sera assurée :

- Au profit des personnels des entreprises à créer désireuses d’entreprendre l’activité de dépollution et de décontamination des sites à amiante ;
- Obligatoirement au profit des personnels des bureaux d’études désirant participer aux études rentrant dans le cadre de ce plan d’action ;
- Pour le personnel de la DHMPE, de l’ANGeD et de l’ANPE

8.6 Coûts estimatifs de l’Appui au Plan d’Action

Le tableau suivant donne les coûts estimatifs du plan d’action.

<table>
<thead>
<tr>
<th>N°</th>
<th>Action</th>
<th>Coûts DTN</th>
<th>Financement</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Préparation et adoption de textes réglementaires</td>
<td>Ministério chargé de l’Environnement</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Constitution de l’UGPA</td>
<td>Ministério chargé de l’Environnement</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Programme de sensibilisation</td>
<td>200.000</td>
<td>Ministério chargé de l’Environnement</td>
</tr>
<tr>
<td>4</td>
<td>Formation du personnel de contrôle et de travaux</td>
<td>A charge du concerné</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Campagne de contrôle et de mesures sur terrain</td>
<td>150.000</td>
<td>Ministério chargé de l’Environnement</td>
</tr>
<tr>
<td>6</td>
<td>Études de reconnaissance de sites amiantés et BD</td>
<td>100.000</td>
<td>Ministério chargé de l’Environnement</td>
</tr>
<tr>
<td>7</td>
<td>Études de faisabilité de dépollution et EIE</td>
<td>A charge du concerné</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Travaux de décontamination</td>
<td>A charge du concerné ou Fonds de National de dépollution</td>
<td></td>
</tr>
</tbody>
</table>

Coût Total 450.000

8.7 Échéancier du plan d’action

Le plan d’action peut s’étendre sur une période minimale de 15 années. Cette période dépend étroitement de la réaction du public et des organismes, des décisions des pouvoirs publics et surtout des moyens à mobiliser et à mettre en œuvre pour l’exécution du plan d’action. Les textes réglementaires à appliquer constituent un facteur limitant et un préalable impératif à l’entreprise de ce plan d’action.

Le tableau suivant résume un échéancier possible de la réalisation de ce plan d’action.
<table>
<thead>
<tr>
<th>Action</th>
<th>Responsable</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adoption des textes réglementaires</td>
<td>Gouvernement</td>
<td></td>
</tr>
<tr>
<td>Constitution et mise en place de l'UGPA</td>
<td>Min. chargé de l'env.</td>
<td></td>
</tr>
<tr>
<td>Action de sensibilisation</td>
<td>UGPA</td>
<td></td>
</tr>
<tr>
<td>Programmes de formation</td>
<td>UGPA</td>
<td></td>
</tr>
<tr>
<td>Installation des laboratoires d'analyses spécialisés</td>
<td>UGPA et privés</td>
<td></td>
</tr>
<tr>
<td>Etudes de dépollution et EIE du désamiantage</td>
<td>Pollueur</td>
<td></td>
</tr>
<tr>
<td>Mission de contrôle et de reconnaissance</td>
<td>UGPA</td>
<td></td>
</tr>
</tbody>
</table>

Désamiantage

1 Gros consommateurs d’amiante-ciment	ONAS, SONEDE et CRDA										
2 Usine SICOAC	SICOAC										
3 Usine CIAMIT	STB										
4 Usine EL MAWASSIR	EL MAWASSIR										
5 Bâtiments publics	Ministère concerné										
6 Bâtiments privés	Privé										
7 Suivi de désamiantage	UGPA										
8.8 **Administrations et acteurs impliqués dans la mise en œuvre du plan d’action**

En plus de l’UGPA, les pouvoirs publics demeurent responsables de la sécurité et de la santé de la population en ce qui concerne l’application des textes en vigueur, les contrôles et la sanction des abus, la réception des plaintes, etc.

- L’Etat en tant que tel (pouvoir législatif et pouvoir judiciaire),
- L’Administration aux trois échelles : centrale, régionale et locale,
- Les Agences nationales chargées de la santé publique, de l’environnement et de la gestion des déchets
- Les collectivités locales : administration (gouvernorat, délégations, communes, secteurs)
- Les organisations non gouvernementales (société civile) actives dans le domaine.

8.9 **Moyens de financement**

Comme indiqué précédemment, les sommes à engager pour le désamiantage à l’échelle du Pays se répartissent sur au moins une quinzaine d’année, à partir de la troisième année de mise en route cette action d’envergure nationale. Deux cas se présentent :

- Le principe pollueur-payeur dont l’application dans ce cas précis relève de la seule décision de l’UGPA et des pouvoirs législatif et judiciaire, selon les conditions d’avancement du projet.

Il peut s’avérer qu’une aide publique pour l’action du désamiantage à l’échelle nationale soit tout au moins partiellement nécessaire. Dans ce cas l’adoption d’une loi et ses textes d’application définissant les ayant droit, les procédures et les limites d’allocation de ces fonds devient nécessaire.
9 Règlementations pour le désamiantage

9.1 Expériences étrangères sur l’amiante

9.1.1 Evaluation des risques

Les dispositions réglementaires sur la gestion des déchets d’amiante, reposent sur une évaluation chiffrée du risque comprenant :

- Un volet sanitaire permettant le diagnostic des pathologies liées à l’amiante.
- Un volet « mesure des expositions » : campagnes et plans de contrôles et mesures, agents de contrôle et techniciens, laboratoires d’analyses, reconnaissance des niveaux d’exposition pour limiter les risques pathologiques.

9.1.2 Diagnostic des pathologies liées à l’amiante

- Recensement des maladies professionnelles provoquées par l’amiante :
 - lorsqu’un patient se rend chez son médecin, il faut pouvoir effectuer le bon diagnostic (fibrose pulmonaire, cancer broncho pulmonaire, mésothéliome).
 - En cas de décès, il faut pouvoir identifier les causes de la mort, en pratiquant le cas échéant les prélèvements nécessaires post-mortem.
 - Rechercher en cours d’enquête si l’exposition à l’amiante a pu être une cause à la survenue de pathologies qui ne sont pas spécifiques (cancer broncho pulmonaire).

- Dénombrement des maladies professionnelles pour établir l’incidence de chacune d’entre elles dans toute la population, de pouvoir faire des recoupements géographiques, par secteur professionnel, âge,

Pour ce faire, les pouvoirs publics, par le biais du Ministère de la Santé, doivent désigner un Observatoire des Pathologies liées à l’Amiante qui sera chargé du « volet santé » et qui aura la responsabilité d’organiser la collecte des informations, leur archivage en base de données, leur traitement, leur synthèse et la diffusion des résultats :

- Mise en place d’une procédure de collecte des informations (forme et hiérarchisation de l’information, sensibilité, priorité, ...)
- Formation des médecins généralistes et spécialistes pour la détection des pathologies, la réalisation d’enquêtes auprès des malades,
- Renforcement des équipes de médecins de travail
- Sensibilisation des médecins du travail pour la réalisation d’enquête en milieu professionnel et pour la recherche des signes et symptômes d’une exposition (allergies, asthmes, pneumonies, plaques pleurales, ...) avant même la survenue d’une pathologie déclarée.
- Établissement de statistiques pertinentes et suivi de l’évolution de la situation consignée de rapports annuels portés à la connaissance des responsables régionaux et du gouvernement par exemple.

9.1.3 Mesures des expositions à l’amiante

Compte tenu de l’absence actuelle de moyens de mesures précises des concentrations en fibres d’amiante dans l’air, ainsi que de moyens rapides et efficace de détecter l’amiante dans les matériaux, il est prioritaire de doter les pouvoirs publics d’une telle capacité.
Mise en œuvre par des laboratoires publics de capacités d’analyse adéquates de matériaux basée sur l’identification minéralogique des variétés d’amiantes dans les produits par Microscope photonique en lumière polarisée (MOLP) et par Microcopie Electronique à Transmission META), mesures de concentration en fibres d’amiante dans l’air par MOCP (Microscope optique à contraste de phase) et META (microscope électronique à transmission.

Formation des techniciens et agents de contrôle et de prélèvement d’amiante sur les sites d’utilisation et dans les produits à base d’amiante, et les techniciens d’analyse de produits de l’amiante au laboratoire.

Réalisation de campagnes de mesure des concentrations en fibres dans l’ambiance des usines ou ateliers, afin d’estimer les niveaux d’exposition des travailleurs dans chaque secteur d’activité.

Les normes étrangères correspondant à ces méthodes d’analyse existent, sont pratiquées de manière courante à l’étranger et peuvent facilement être utilisées par certains laboratoires en Tunisie pouvant déjà être équipés pour l’analyse et le contrôle des produits de l’amiante.

9.1.4 Risques courants, habituellement identifiés à l’étranger

On peut classer les situations d’exposition de la manière suivante :

- La santé publique : les personnes sont exposées sans rapport avec leur activité professionnelle (enseignant dans une école ou dans une université aux bâtiments contenant des matériaux amiantés, habitants d’immeubles à produits d’isolation amiantés,...).

- La santé des travailleurs : les personnes sont exposées du fait de leur activité professionnelle (poseur de canalisations en amienne ciment par exemple).

9.1.5 Santé publique

Elle est mise en cause principalement par l’inhalation de fibres d’amiante lors de l’utilisation de produits manufacturés ou de la fréquentation de locaux contenant de l’amiante sous forme de matériaux de construction.

9.1.6 Santé des travailleurs

Les risques les plus élevés sont ceux auxquels sont soumis les travailleurs dont l’activité concerne la transformation de l’amiante (fabrication de l’amiante ciment par exemple), ou ceux de techniciens du bâtiment ou de l’industrie lors de la mise en œuvre de produits ou de matériaux en contenant (pose de canalisations en amienne ciment).

L’exposition de techniciens et agents de maîtrise aux produits amiantés, peut par la même occasion entraîner l’exposition involontaire des familles, par le transport des fibres et poussières à domicile

Seule une fraction des travailleurs est amenée à être exposée à l’amiante, pour cette fraction l’exposition peut être très importante. Pour ces travailleurs, les niveaux et durée d’exposition sont généralement très importants et conduisent à la survenue de maladies professionnelles invalidantes ou mortelles.

9.1.7 Impacts sur l’environnement

Il faut noter que des niveaux et durée d’exposition à l’amiante élevés peuvent entraîner des atteintes à plus ou moins long terme et de manières directe ou indirecte à la santé publique.

L’impact sur l’air est le plus susceptible d’avoir des répercussions sur la santé de l’homme par le biais de vecteurs de transport aéralique, de sédimentation, puis de ventilation ou de remise en suspension. L’inhalation est la voie d’exposition prioritaire entraînant des pathologies reconnues
Les usines de transformation de l’amiante sont les principaux émetteurs de poussières et fibres libres susceptibles d’être transportées par le vent.

Chaque chantier de pose, rénovation de canalisations, toiture ou bardage en amiante ciment, utilisant des outils à grande vitesse de coupe, est lui aussi une source supplémentaire de poussières et fibres contaminant les voisinages.

Il n’existe pas de pathologie liée à la consommation d’eau contaminée par l’amiante. L’impact d’amiante dans l’eau de consommation ne semble pas exister, et n’est donc pas prioritaire.

Les eaux de ruissellement sont capables de transporter des fibres d’amiante hors des lieux de stockage, puis de les déposer plus loin dans les caniveaux, talwegs et crevasses. Au séchage, les plaques desséchées à fibres d’amiante décantées auparavant, sont à nouveau susceptibles d’être remises dans l’air ou en suspension dans l’eau et dispersées. Il est donc impératif d’instaurer une gestion intégrée des eaux pluviales sur les lieux de stockage, entreposage et/ou enfouissement de déchets amiantés.

Il n’existe pas d’information quant à l’impact sur le vivant. Il n’est pas exclu que la faune soit affectée par une inhalation de fibres d’amiante, comparativement à l’homme.

9.2 Etude des différentes mesures réglementaires prises dans les pays étrangers

9.2.1 Exposition des travailleurs à l’amiante

L’exposition des travailleurs est contrôlée et harmonisée à un niveau européen. Cette exposition a d’abord fait l’objet des deux directives 83/477 et 91/382 de la CEE. Les valeurs limites fixées pour la concentration dans l’air sont :

- pour le chrysotile : 0.60 fibres/cm³, taux calculé ou mesuré pour une période de référence de 8 heures,
- pour toute autre forme d’amiante : 0.30 fibres/ cm³, taux calculé ou mesuré pour une période de référence de 8 heures

La teneur de l’air en amiante est mesurée régulièrement. Les lieux où se déroulent des activités présentant des risques d’exposition sont clairement délimités et signalés. Ils sont interdits aux personnes autres que ceux qui, en raison de leur travail ou de leur fonction sont amenés à y accéder. Les travailleurs disposent de vêtements de travail ou de protection appropriés.

Ces mesures ont été revues en 2003, suite aux nouvelles données épidémiologiques et sanitaires ; une nouvelle directive a été établie (2003/18/CE) :

- elle réduit la valeur limite pour l’exposition professionnelle à l’amiante des travailleurs
- elle révoque les deux valeurs limites établies par la directive 83/477/CEE en fixant une seule valeur limite maximum de concentration d’amiante en suspension dans l’air de 0.1 fibre/cm³ mesurée par rapport à une moyenne pondérée dans le temps sur 8 heures
- elle interdit les activités qui exposent les travailleurs aux fibres d’amiante, à l’exception du traitement et de la mise en décharge des produits résultant de la démolition et du désamiantage
- elle met à jour les recommandations pratiques pour la surveillance clinique des travailleurs exposés, à la lumière des connaissances médicales les plus récentes, en vue d’un dépistage précoce des pathologies liées à l’amiante

9.2.2 Réglementations et dérogations pour l’utilisation de l’amiante

En décidant d’interdire l’amiante, les pays européens ont tous accordé des délais pour l’application de cette mesure. De larges dérogations existent encore dans certains pays, et que même dans les
pays les plus restrictifs (Allemagne, Autriche, Suède), des dérogations continuent à être accordées au cas par cas par les services compétents quand il s’agit d’amiante chrysotile et que l’on peut prouver que des produits de remplacement moins ou non nocifs ne sont pas disponibles. Ainsi, sept pays européens, dont la Grande-Bretagne et l’Espagne, permettent un usage contrôlé de l’amiante comme le stipule la réglementation européenne.

La valeur limite d’exposition à l’amiante pour les pays européens est actuellement de 0.1 fibres par millilitre. Juste avant, les valeurs varient d’un pays à un autre, le seuil français étant le plus faible.

| Tableau 9.1. Quantité de fibres par millilitre autorisée sur huit heures de travail |
|---|---|
| Chrysotile | Autres fibres d’amiantes |
| Allemagne | 0,15 | 0,15 |
| Belgique | 0,5 | 0,15 |
| Grèce | 0,6 | 0,3 |
| Espagne | 0,6 | 0,3 |
| France | 0,1 | 0,1 |
| Italie | 0,6 | 0,2 |
| Royaume-Uni | 0,5 | 0,2 |
| Suisse | 0,25 | 0,25 |

9.2.3 Mesures réglementaires concernant les déchets d’amiante en France

Les déchets d’amiante occasionnés par les travaux d’enlèvement et de traitement de l’amiante, englobent les déchets de flocage et de calorifugeage des bâtiments devant faire l’objet de travaux au titre de l’inventaire prévu par le décret du 7 février 1996, mais aussi, tous les déchets de sites industriels ou résultant d’une utilisation de l’amiante autre que domestique (textiles, garnitures de friction...).

9.2.3.1 Règles générales

Il y a lieu de mentionner pour les règles générales, des notions préliminaires utiles.

- **Nomenclature d’un déchet** : on distingue les déchets en fonction de leur origine : déchets ménagers ou déchets industriels ou en fonction de leur nature (dangereux, non dangereux, inertes...).

- **Déchet dangereux** : les déchets sont considérés comme dangereux s’ils présentent une ou plusieurs des propriétés suivantes : explosif, comburant, inflammable, irritant, nocif, toxique, cancérogène, corrosif, infectieux, toxique pour la reproduction, mutagène, écotoxique.

- **Responsabilité de l’entreprise productrice ou détentrice de déchets** : chaque entreprise est responsable de l’élimination des déchets qu’elle produit et/ou détient. Elle doit s’assurer que leur élimination est conforme à la réglementation.

- **Elimination d’un déchet** : les producteurs de déchets sont tenus d’assurer ou de faire assurer leur élimination dans le respect de la réglementation et dans des conditions propres à éviter tout effet nocif sur l’environnement.

- **Installation d’élimination d’un déchet** : toute installation d’élimination de déchets est soumise à la réglementation des installations classées pour l’environnement. Les déchets dangereux ne peuvent pas être déposés dans des installations de stockage recevant d’autres catégories de déchets.

- **Suivi des déchets dangereux** : les producteurs de déchets doivent renseigner et conserver les informations relatives au circuit de traitement de leurs déchets dangereux.
+ en émettant un bordereau de suivi qui assure leur traçabilité jusqu’au centre d’élimination, de regroupement ou de prétraitement ;
+ en tenant à jour un registre de suivi des déchets.

- Réglementation spécifique en matière de suivi : les déchets d’amiante figurent parmi les déchets soumis à une réglementation spécifique en matière de suivi.

- Interdictions : il est interdit :
+ d’abandonner des déchets. Est considéré comme un abandon tout acte tendant, sous le couvert d’une cession à titre gratuit ou onéreux, à soustraire son auteur aux prescriptions de la réglementation,
+ de brûler des déchets à l’air libre
+ de mélanger certains déchets (ainsi les huiles usagées, les PCB, les fluides frigorigènes, les piles, les pneumatiques, les déchets d’emballages doivent être séparés des autres catégories de déchets)
+ d’enfourir des déchets non ultimes, etc...

- Les centres de stockage de déchets dangereux – CSD classe 1

Une installation de stockage de déchets dangereux est une installation d’élimination de déchets dangereux par dépôt ou enfouissement sur ou dans la terre. Il peut également s’agir de sites utilisés pour stocker temporairement des déchets dangereux dans les cas suivants :
+ Stockage pour une durée supérieure à un an avant élimination,
+ Stockage pour une durée supérieure à trois ans avant valorisation ou traitement.

- Les centres de stockage de déchets non dangereux – CSD classe 2

Ce sont des installations d’élimination de déchets non dangereux (déchets municipaux, déchets non dangereux de toute autre origine et déchets d’amiante lié) par dépôt ou enfouissement sur ou dans la terre, collectives, ou internes à un établissement de production.

Les différents types de déchets d’amiante

En France, on distingue trois grands types de déchets contenant de l’amiante :
- Les déchets d’amiante libre provenant des flocages et calorifugeages dont les fibres peuvent se libérer dans l’atmosphère avec la dégradation des matériaux
- Les déchets d’amiante liée ou amiante-ciment qui ne sont pas susceptibles de libérer des fibres
- Les autres déchets contenant de l’amiante tels que les plaquettes de frein, produits manufacturés, etc.

Tous ces déchets font l’objet d’un cadre réglementaire concernant leur origine, leur nature, les obligations du détenteur de ces déchets, celles du collecteur et du transporteur, la protection des travailleur, mais aussi les techniques de traitement et de valorisation.

Déchets d’amiante libre : Les déchets d’amiante libre proviennent de travaux et opérations d’encoffrement, de fixation (revêtement de surface ou imprégnation) et d’enlèvement (déflocage, décalorifugeage). Ils peuvent être classés en trois catégories :
- Déchets de matériaux (flocages, calorifugeages seuls ou en mélange avec d’autres matériaux et d’autres déchets non décontaminés sur place sortant de la zone confinée)
- Décou les matériaux et d’équipements (sacs d’aspirateurs, outils et accessoires non décontaminés, filtres usagés du système de ventilation, bâches, chiffons, matériel de sécurité (masques, gants, vêtements jetables...)

- Décou ts issus du nettoyage (eaux résiduaires non traitées, résidus de traitement des eaux, poussières collectées par aspiration, boues, résidus de balayage...)

Les décis d’amiante ciment : Les décets d’amiante ciment sont de plusieurs catégories :

- Décots issus des travaux relatifs à la réhabilitation et à la démolition dans le secteur du bâtiment et des travaux publics constitués de décots de matériaux : plaques ondulées, plaques support de tuiles, ardoises en amiante-ciment, produits plans, tuyaux et canalisations.

- Produis en amiante-ciment destinés à l’origine au secteur du bâtiment et des travaux publics, invendus ou retirés de la vente.

Autres déchets contenant de l’amiante

L’amiante est aussi un matériau utilisé surtout :

- Dans l’industrie (freins, embrayages industriels et automobiles, joints...)

- Dans la construction (dalles et revêtements de sol, gaines de ventilation, tuyaux de plomberie...) pour ses excellentes propriétés d’isolant, en particulier thermique et phonique, et de résistance à l’usure et à la chaleur.

9.3 Evolution de la législation en Europe

En Europe durant la deuxième moitié du XXème siècle, l’amiante a largement été utilisé dans l’industrie et dans le bâtiment (isolation thermique, flocages, bardages, produit ignifuge, conduites en amiante ciment, textiles, équipements divers, ...) surtout dans construction d’immeubles et pour des travaux d’aménagement

Des études médicales avaient aussi réussi à prouver depuis les années 1960-1970, que les fibrilles détachées d’amiante lorsque inhalées, sont susceptibles de pénétrer dans l’appareil respiratoire jusqu’aux alvéoles pulmonaires, d’empêcher l’échange gazeux entre air et circulation sanguine et de provoquer des centres d’irritation continue dans l’organisme ; ceci génère des asbestoses et des cancers du poumon. L’amiante a donc fait l’objet d’une législation très stricte pour son contrôle et son élimination, allant jusqu’à son éradication totale.

Les entreprises et les administrations en Europe se trouvent aujourd’hui confrontées à un impératif législatif les mettant devant de graves responsabilités s’ils ne prennent pas de dispositions pour un contrôle des produits de marché, des bâtiments, des équipements publics et privés, visant une élimination de l’amiante et la réhabilitation des lieux. Un ensemble d’obligations incombent, désormais, aussi bien aux propriétaires qu’aux opérateurs et chefs d’entreprises quant à la réglementation en matière d’amiante.

9.3.1 Interdiction d’usage et de mise sur le marché de l’amiante

La décision d’interdire l’amiante est intervenue tôt dans plusieurs pays européens. Cependant ces pays ont accordé de grands délais pour l’application de cette mesure, si bien que l’application presque totale de cette interdiction n’est en vigueur que depuis peu. De larges dérogations existent encore dans certains de ces pays, et que même dans les pays les plus restrictifs (Allemagne, Autriche, Suède), des dérogations continuent à être accordées au cas par cas par les services compétents quand il s’agit d’amiante chrysolite et que l’on peut prouver que des produits de remplacement moins ou non nocifs ne sont pas disponibles.

L’on s’est aussi rapidement rendu compte que les mesures d’hygiène industrielles adoptées pour la production et dans les milieux de travail, se sont avérées insuffisantes, puisque les produit finis (plaques isolantes, conduits en fibrociment,...) peuvent se transformer ultérieurement (intervention humaine, usure progressive) au risque de libérer des fibres dans l’atmosphère. L’accumulation...
d’amiante de par ses applications diverses représentait donc une véritable bombe à retardement pour la santé publique.

Le coût croissant du désamiantage et les craintes d’un contentieux massif de la part des victimes avait dissuadé les milieux patronaux à limiter l’usage de l’amiante et à investir dans les produits de substitution. Dans ce contexte, au moins huit pays (Allemagne, Suisse, Luxembourg, Finlande, Danemark, Norvège, Italie, la France) on les premiers pris la décision d’une interdiction pratiquement totale de l’importation, de la transformation, de la commercialisation et de l’usage de l’amiante.

9.3.2 Exposition à l’amiante et réhabilitation des lieux : les directives CEE

L’amiante sous toutes ses formes, étant identifié désormais comme produit hautement dangereux, il peut provoquer des maladies graves. L’exposition des travailleurs à ce produit est contrôlée et harmonisée à un niveau européen. Les différents degrés d'exposition sont adaptés selon l'évolution des connaissances scientifiques en la matière. Des directives sont votées et ultérieurement adoptées par le détail de la législation de chaque pays de la communauté.

La première directive 83/477/CEE du Conseil, du 19 septembre 1983, concerne la protection des travailleurs contre les risques liés à une exposition à l’amiante pendant le travail (deuxième directive particulière au sens de l'article 8 de la directive 80/1107/CEE la précédant).

Ultérieurement, la directive 83/477 a été modifiée par la directive 91/382 du 25 juin 1991 concernant la protection des travailleurs contre les risques liés à une exposition à l’amiante pendant le travail (deuxième directive particulière au sens de l'article 8 de la directive 80/1107/CEE)

1. Dans le détail, ces deux directives qui ont été historiquement les premières à fixer les valeurs limites pour la concentration de l’amiante dans l’air, ne s’appliquent pas à la navigation maritime et aérienne.

2. Le terme "amiante" désigne six silicates fibreux qui sont énumérés à l'article 2 (l’actinolite, la grunérite amiente (amosite), l'antophylitte, la chrysotile, la crocidolite et la trémolite).

3. Leurs valeurs limites de concentration dans l’air sont :

- pour la chrysotile: 0,60 fibre par cm³ calculé ou mesuré pour une période de référence de 8 heures;
- pour toute autre forme d’amiante: 0,30 fibre par cm³ calculé ou mesuré pour une période de référence de 8 heures.

4. Toute activité susceptible de présenter un risque d’exposition à la poussière provenant de l’amiante ou des matériaux en contenant est évaluée de manière à définir le degré et la nature de l’exposition des travailleurs.

Les activités font l’objet d’une notification par l’employeur à l’autorité responsable de l’État membre. La notification comprend au moins les types et la quantité d’amiante utilisés, les activités et procédés mis en œuvre et les produits fabriqués. Elle est accessible aux travailleurs ou à leurs représentants.
5. La projection d'amiante par flocage est interdite ainsi que les activités qui impliquent l'incorporation de matériaux isolants ou insonorisant de faible densité (inférieur à 1 g/cm³).

6. L'exposition à l'amiante est réduite par une limitation maximale de son utilisation, des personnes exposées et par un entretien des bâtiments, un stockage, un transport et un étiquetage adéquats.

7. Afin de garantir le respect des valeurs limites, la mesure de la teneur de l'air en amiante est effectuée régulièrement.

8. En cas de dépassement de ces valeurs, les causes sont identifiées et les mesures pour y remédier sont prises avant la reprise du travail.

9. Les lieux où se déroulent des activités présentant des risques d'exposition sont clairement délimités et signalés par des panneaux. Ils sont interdits aux fumeurs et aux travailleurs autres que ceux qui, en raison de leur travail ou de leur fonction sont amenés à y pénétrer. Des zones sont aménagées pour permettre aux travailleurs de manger et de boire sans risque de contamination par la poussière d’amiante. Les travailleurs disposent de vêtements de travail ou de protection appropriés.

10. Les travailleurs et/ou leurs représentants reçoivent une information adéquate concernant les risques pour la santé, l’existence de valeurs limites, la nécessité de la surveillance atmosphérique, les prescriptions d'hygiène et les précautions particulières à prendre.

11. Une évaluation de l'état de santé et un examen spécifique du thorax de chaque travailleur doit être faite avant son exposition à la poussière provenant de l'amiante ou des matériaux contenant de l'amiante et ensuite, au moins une fois tous les 3 ans durant l'exposition. L'employeur tient un registre accessible au travailleur concerné et aux médecins, indiquant la nature et la durée de l'activité du travailleur et l'exposition à laquelle il est soumis.

12. Pour les travaux de démolition ou de retrait de l'amiante, un plan de travail établi avant le début des travaux, prévoit les mesures de santé et de sécurité nécessaires.

13. Les États membres tiennent un registre des cas d'asbestose et de mésothéliome.

14. L’employeur n’est pas tenu de se conformer à la notification à l’autorité, aux mesures atmosphériques, à la signalisation, aux mesures de santé et à l’information des travailleurs, si l’évaluation des risques d’exposition révèle un niveau de concentration de l’air en amiante inférieur:

- pour la chrysotile à 0,20 cm³ pour 8 heures, ou à une dose cumulée de 12,00 fibres pour 3 mois,
- et pour toutes autres formes d’amiante inférieure à 0,10 fibre par cm³ pour 8 heures, ou à une dose cumulée de 6,00 fibres pour 3 mois.

La directive 2003/18/CE du Conseil, du 27 mars 2003 :

1. Réduit la valeur limite pour l'exposition professionnelle à l'amiante des travailleurs. Elle révoque les deux valeurs limites établies par la directive 83/477 en fixant une seule valeur limite maximum de concentration d’amiante en suspension dans l’air de 0,1 fibre par cm³ mesurée par rapport à une moyenne pondérée dans le temps sur 8 heures (TWA) ;

2. Supprime les exceptions prévues pour la navigation maritime et aérienne;
3. Interdit les activités qui exposent les travailleurs aux fibres d'amiantes, à l'exception du traitement et de la mise en décharge des produits résultant de la démolition et du désamiantage;

4. Met à jour les recommandations pratiques pour la surveillance clinique des travailleurs exposés, à la lumière des connaissances médicales les plus récentes, en vue d'un dépistage précoce des pathologies liées à l'amiantes.

<table>
<thead>
<tr>
<th>Acte</th>
<th>Entrée en vigueur</th>
<th>Délai de transposition dans les États membres</th>
<th>Journal Officiel CEE</th>
</tr>
</thead>
</table>
1.1.1990 pour les activités extractives de l'amianta. | JO L 263 du 24.9.1983 |
| Acte(s) modificatif(s) | Entrée en vigueur | Délai de transposition dans les États membres | Journal Officiel |
1.1.1996 pour les activités extractives de l'amianta
1.1.1999 pour la Grèce | JO L 206 du 29.7.1991 |
| Directive 98/24/CE | 25.5.1998 | 5.5.2001 | JO L 131 du 5.5.1998 |

9.3.3 Evolution historique de la législation : exemple de quelques pays

Allemagne

1. Accord volontaire avec l'industrie en 1979 avec pour objectif de parvenir au bout de 10 ans à une interdiction de l'amianta.

2. Décret sur les substances dangereuses, dans sa version de 1990 régissant : i) le classement de toutes les fibres d'amianta dans le groupe 1 des substances cancérigènes ; ii) l'interdiction de la fabrication et de l'emploi de produits contenant de l'amianta avec cependant les dérogations suivantes :
 - Plaques grand format d'amianta-ciment : production autorisée jusqu'au 1/1/1991, utilisation autorisée jusqu'au 1/1/1992,
 - Conduits d'amianta-ciment : production autorisée jusqu'au 1/1/1994, utilisation autorisée jusqu'au 1/1/1995

La seule exception à l'interdiction totale de l'amianta concerne les diaphragmes pour les procédés d'électrolyse (dichlore/soude), dont la production était autorisée jusqu'au 31/12/1998 et l'utilisation jusqu'au 31/12/1999.

Autriche

1. 1/1/1988, interdiction des garnitures de freins et des embrayages pour voitures ;
2. 27/6/1990, interdiction de tous les produits contenant des amphiboles ;
3. 1/7/1990, interdiction de toutes les plaques en amianta-ciment ;
4. 1/1/1994, interdiction de tout produit d'amianta-ciment dans la construction.

Des dérogations sont toutefois autorisées pour les garnitures de frein ou d'embrayage lorsqu'il est techniquement impossible d'utiliser des garnitures sans amianta et pour les plaques en fibrociment, à condition qu'elles soient recouvertes d'un revêtement exempt d'amianta.
Danemark

1. Interdiction de produire, d'importer, d'utiliser et de travailler l'amiante ou tout produit contenant de l'amiante à compter du 1/1/1986, en application de l'arrêté 660 du 24 septembre 1986. Cependant, un échéancier a été mis en place en fonction des différents types d'amiante :

 - Plaques d'amiante-ciment : production autorisée jusqu'au 31/12/1986, et dont l'utilisation autorisée jusqu'au 30/6/1987,
 - autres produits d'amiante-ciment pour usage extérieur (sauf en crocidolite et amosite) : importation et utilisation autorisée jusqu'au 31/12/1987, utilisation autorisée jusqu'au 30/6/1988,

La fabrication, l'importation et l'utilisation d'amiante ou de produits contenant de l'amiante continue à être autorisée pour les produits suivants :

 - joints et garnitures d'étanchéité (toujours, l'utilisation de joints d'étanchéité sera interdite pour les systèmes d'eau d'une température inférieure à 110°C),
 - matériaux de friction.

Finlande

1. Interdiction de l'importation d'amiante et de produits contenant de l'amiante à compter du 1/1/1993.

Suède

1. Interdiction de la crocidolite en 1976.

 - Dérogations possibles, sauf pour la crocidolite : avec autorisation du Bureau national pour la sécurité et la santé au travail, s'il n'est pas possible d'utiliser un matériau moins dangereux et si les émissions de poussière d'amiante sont empêchées.
 - Dérogations : garnitures de freins de véhicules anciens (avant 1987), joints utilisés dans de conditions extrêmes de pression et de température.

Suisse

Des dérogations étalées jusqu'en 1995 sont autorisées pour la vente et l'importation des produits suivants :

 - plaques planes et plaques ondulées de grand format : interdiction au 1/1/1991,
 - conduits d'évacuation des eaux domestiques : interdiction au 1/1/1991,
 - conduits de pression et de canalisation : interdiction au 1/1/1995,
 - garnitures de friction pour véhicules à moteur, machines et installations industrielles : interdiction au 1/1/1992,
- garnitures de friction de rechange pour véhicules à moteur, véhicules ferroviaires, machines et installations industrielles présentant des caractéristiques techniques particulières : interdiction au 1/1/1995,

- joints de culasse pour moteurs de type ancien : 1/1/1995,

- joints plats statiques et garnitures dynamiques pour des éléments soumis à de fortes contraintes : interdiction au 1/1/1995,

- filtres et substances destinées à la filtration pour la production de boissons : interdiction au 1/1/1991,

- filtres destinés à la filtration ultrafine ou stérilisatrice pour la production de boissons et la production pharmacologique : interdiction au 1/1/1995,

Italie

1 - Ordre du Ministère de la Santé 26/6/86 : limitation de la crocidolite

2 - Circulaire n°42 du Ministère de la Santé 1/7/86: interdisant l’usage les tubes en amianté ciment

4 - Décret - Loi n°277 du 15/8/91: interdiction de l’amiante utilisé dans certaines applications

5 - Loi n°257 du 27/3/92 : interdiction de l’utilisation de l’amiante

6 - Arrêté du Ministère de l’Environnement du 12/2/97 : critères d’approbation des produits de substitution de l’amiante

10 - Décret - Loi n°257 du 25/07/06 : application de la directive 2003/18/CE sur la protection des travailleurs contre les risques résultant de l’exposition à l’amiante

France

1978. Interdiction des flocages en amianté

1996. Interdiction de l’importation, de la fabrication, de la transformation et de la mise sur le marché de l’amiante, incorporé ou non dans des matériaux ou produits, sauf pour les vêtements de pompiers et pour certains joints et freins.

1999. L’union européenne interdit l’amiante à partir du 1.1.2005

9.4 Proposition d’une réglementation pour la Tunisie

9.4.1 Cadre réglementaire existant

La Tunisie s’est déjà dotée d’une réglementation partielle qui peut être classée en deux catégories de textes réglementaires.

• Cette décision a stimulé la réglementation et l’action de lutte contre les dangers de l’utilisation de l’amiante dans l’industrie, ou comme composant de produits manufacturés et utilitaires commercialisés dans le Pays.
• Par le terme amiante amphibole, il faut entendre les variétés d’amiante dure comme l’amphibole elle-même, la crocidolite, la trémolite, l’antophyllite, l’amosite, etc...
• Il faut noter qu’auparavant, depuis 1997, un contrôle régulier à l’importation, a été instauré par la Douane Tunisienne en collaboration avec la Direction Générale du Commerce et de la Concurrence Industrielle au Ministère du Commerce. Seuls l’amiante chrysotile et la serpentine sont autorisés à l’importation que ce soit en poudre, en filature (courroies de transmission mécaniques), ou comme constituants de produits manufacturés (patins de freinage, disques d’embrayage, ...).
• Cette décision et contrôles visant à limiter l’importation, la commercialisation, l’industrialisation et l’usage de l’amiante, identifient l’amiante comme un produit dangereux et s’inspirent de la loi n°96-41 du 10 juin 1996 relative aux déchets et au contrôle de leur gestion et de leur élimination ;
• Le décret 2000-2339 du 10 octobre 2000, fixant la liste des déchets dangereux, classe les déchets des unités de production d’ouvrage en amianté ainsi que les déchets contenant de l’amiante comme déchets dangereux à traiter spécifiquement.
• Cependant, en l’absence d’un décret d’application relatif à la gestion des déchets d’amiante et fixant leur mode d’élimination, ces déchets restent considérés comme des déchets inertes, dont le stockage et la démolition s’effectue dans des aires facilement accessibles par l’homme (généralement dans des dépotoirs sauvages). En outre, les cahiers de charge des utilisateurs des produits à base d’amiante (SONEDE, ONAS, Ministère de l’Agriculture,...) ne fixent pas de spécifications particulières pour la manipulation et la manutention d’objets à base d’amiante, à respecter lors de travaux, ni le mode d’élimination des déchets à amianté collectés.

Pour le transport de déchets d’amiante, il n’existe pas de textes réglementaires spécifiques ; cependant ceux du transport de déchets dangereux, pourraient s’appliquer :
• Loi 96-41 du 10 juin 1996, relative aux déchets et au contrôle de leur gestion et de leur élimination.
• Loi n° 97-37 du 2 juin 1997, relative au transport par route des matières dangereuses.
• Décret n°2001-143 du 5 janvier 2001 fixant les règles de sécurité applicables au chargement, au déchargement et à la manutention des marchandises dangereuses dans les ports maritimes du commerce.
• Arrêté des Ministres de l’Intérieur et du Transport du 18 mars 1999 fixant le modèle de fiche de sécurité relative au transport de matières dangereuses par route et les consignes qu’elle doit comporter.
• Arrêté du Ministre du Transport du 19 janvier 2000 fixant les étiquettes de danger et les marques distinctives relatives au transport de matières dangereuses par route.
• Arrêté des Ministres de l’Intérieur et du Transport du 19 mai 2000, fixant les matières dangereuses dont le transport est soumis à l’obtention d’une feuille de route, le modèle de cette feuille et les conditions de sa délivrance.
9.4.2 Aspects sanitaires

En Tunisie, il n’existe aucune réglementation quant à l’exposition des travailleurs aux fibres d’amiante. Il est alors temps comme proposé ci-après, d’instaurer un cadre réglementaire permettant une spécification des valeurs limites d’exposition des travailleurs à l’amiante.

9.4.3 Réglementation portant sur les produits de l’amiante

Un contrôle a aussi été instauré par les Services de Douanes et par la Direction Générale du Commerce et de la Concurrence industrielle (DGCCI) pour contrôler systématiquement la nature de l’amiante dans tous produits importés soupçonnés d’en contenir. Un certificat est exigé à l’importation. L’arrêté précédent stipule que les quantités de produits existant sur le marché et contenant de l’amiante dur autre que le chrysotile, doivent être retirés et détruits. Tout produit importé qui s’avère contenir de l’amiante dur, doit obligatoirement être retourné au pays d’origine.

Depuis l’année 2003, l’usine EL Mawassir a donc continué d’importer le chrysotile amianté souple, alors que la tendance mondiale affiche pratiquement l’éradication totale de tous les amiantes.

9.4.4 Réglementation sur les déchets

Les amiantes étant reconnues de par le Monde comme produits hautement dangereux, la loi n° 96-41 du 10 juin 1996 relative aux déchets et au contrôle de leur gestion et de leur élimination, s’applique donc pleinement à l’amiante toutes catégories confondues.

Le problème est que malgré cette définition légale du déchet dangereux, la loi n° 96-41 du 10 janvier 1996 et le décret précédent, n’ont pas été renforcés par un ou des décrets d’application par secteur d’activité fixant les modes de gestion, les procédures, les techniques d’élimination, les conditions de travail dans les milieux contaminés par l’amiante, etc.

C’est pourquoi, le Ministère chargé de l’Environnement a toujours continué l’action pour réussir cette tâche, c’est l’objectif premier même de l’étude de 2008 et de la présente.

Au plan national, il a été créé une décharge destinée à accueillir les déchets dangereux à Jeradou, mais les quantités colossales (millions de tonnes) de déchets d’amiante ne peuvent pas y être éliminées comme prévu en la première partie de cette étude.

A l’échelle nationale, dès que l’action de lutte contre le fléau amianté tarde à venir et qu’aucune action n’a été menée sauf celle auprès des usines et des organismes gros consommateurs d’amiante, et le travail d’interdiction d’amiante dure par les Services de Douanes et par la DGCCI, aucune action organisée n’a été menée pour éradiquer ce fléau.

Plus, EL Mawassir et certains industriels et organismes commercialisant des produits à base d’amiante ont continué à introduire les amiantes souples, surtout le chrysotile dans l’environnement. Par exemple, nous avons observé au passage au mois de septembre 2014, que le marché de
bacchante, de produits et nécessaires usagers de Zahrourni commercialise jusqu’aujourd’hui des plaques ondulées déposées en pile à même le sol en pleine rue trop fréquentée.

Dans le cadre de nos enquêtes nous avons aussi constaté que le citoyen moyen ignore totalement ce qu’est l’amiante, c’est donc qu’il ne pense aucunement à ce danger. Dès lors, une action de sensibilisation à ce danger devient plus que nécessaire.

Au plan de la gestion des déchets d’amiante, rien n’est entrepris ou organisé à l’instar de ce qui concerne plein d’autres déchets dangereux. Avec une certaine sous-estimation, voire une sous-estimation certaine, chacun semble en faire à sa façon quant à la gestion des produits et déchets d’amiante, ce qui débouche dans la plupart des cas constatés à une cohabitation malsaine de l’Homme et du danger mortel dans son propre habitat et dans l’environnement riverain.

9.4.5 Proposition d’un texte réglementaire

La conclusion la plus importante de l’étude 2008 et de la première phase de travail a été de proposer de bannir définitivement ce fléau pour les raisons suivantes :

- Une orientation pratiquement unanime des pays du Monde entier à éradiquer l’amiante,
- La disponibilité de produits de substitution de l’amiante est déjà réussie sans encombre économique ou fonctionnelle, comme il a d’ailleurs été démontré dans la première phase de ce projet,
- En Tunisie, l’usine CIAMIT a cessé ses activités, l’usine SICOAC s’est converti au PVC et seule l’usine EL Mawassir a continué ses activités jusqu’à fin 2013 pour se reconverter définitivement à des produits de substitution de l’amiante,
- Les organismes gros consommateurs d’amiante ont déjà entamé un début de reconversion de leurs réseaux, les canalisations en amianté-ciment n’étant pratiquement plus disponibles sur le marché à partir de 2013.
- Enfin l’action en amont de la douane et de la DGCCI semble aussi bien réussie avec baisse notable affichée de la quantité de produits à base d’amiante importés. L’amiante étant interdit à l’usinage dans les pays fournisseurs, de moins en moins et rapidement l’amiante est en cours d’éradication totale du marché.

Aussi, pour concevoir et mettre en œuvre un plan d’action pour le désamiantage à l’échelle du Pays, le texte réglementaire constitue un préalable incontournable.

Le texte réglementaire à proposer concerne plusieurs aspects de l’interdiction définitive, de la reconnaissance et mesures de l’amiante, et de l’enlèvement et de la gestion de ses déchets. les objectifs couverts par ce texte sont les suivants :

1. Interdiction de l’amiante en Tunisie,
2. Exposition à l’amiante dans les immeubles en Tunisie,
3. Travaux d’enlèvement de l’amiante et la gestion des produits et déchets en contenant,
4. Travaux de gestion et de remise en état des sites pollués par l’amiante.

Il est aussi clair d’œuvrer à la non-multiplication des textes à appliquer dans le domaine ; par exemple, les textes concernant la formation d’experts ne sont pas nécessaires, dès que l’on puisse faire appel aux textes existants concernant l’éducation et la formation existant dans divers domaines.
9.4.6 Texte relatif à l’interdiction de l'utilisation de l’Amiante, à l’exposition à l’amiante dans les immeubles bâtis et à la gestion des déchets d’amiante, et à la remise en état des sites pollués par l’amiante.

Annexe 1. Le but du décret proposé est d’interdire définitivement la détention, la fabrication, la transformation, la vente, l’importation, la mise sur le marché national, et la cession de produits ou de biens contenant des produits de toutes variétés d’amiante, que ces produits soient ou non incorporés dans des matériaux, produits ou dispositifs d’usage commun.

Exposition à l’amiante dans les immeubles bâtis.

Le but de ce décret est la protection des occupants des lieux et de visiteurs contre tous risques liés à l’exposition à l’amiante, que ce soit dans les lieux publics fréquentés ou dans les immeubles résidentiels privés. Il recommande le certificat de “bien exempt d’amiante” lors de la cessation pour quelque motif que ce soit, de la construction, de la vente, et surtout lors de la réfection ou de la démolition d’un bâtiment existant.

Pour la gestion des déchets d’amiante. Ce décret est destiné pour régir les travaux de traitement de l’amiante, son isolement et son enlèvement et les études obligatoires et procédures à respecter, et les conditions de travail pour ce faire. Ce texte s’applique aussi à l’entreposage sécurisant et à la gestion sur site des déchets d’amiante et déchets contaminés générés lors de travaux. Le transport des déchets étant géré par un décret existant séparé et par les lois en vigueur, ce type de déchets dangereux doivent être éliminés dans une décharge appropriée ex situ ou in situ sur la fois d’une étude dépollution et une étude d’impact sur l’environnement (PGE/PS) concernant les travaux à effectuer. Les Agences ANPE et ANGeD autorisent en amont, et contrôlent les travaux en cours d’exécution jusqu’à la mise définitive en décharge.

Remise en état des sites pollués par l’amiante. Ce projet de décret vise la gestion raisonnée, l’assainissement des lieux contaminés par l’amiante et leur remise en état, la gestion des déchets et leur mise en décharge de produits dangereux. Il définit :

- Les procédures administratives nécessaires à suivre pour la conduite à terme de la dépollution,
- Les techniques de travail et la protection à apporter aux travailleurs, aux intervenants et aux riverains de sites d’intervention pollués par l’amiante,
- Les études de base nécessaires et leur contenu, devant être accomplies avant toute intervention, les procédures d’autorisation et les moyens de contrôle depuis les lieux d’intervention pour le désamiantage, jusqu’au lieu définitif d’élimination des déchets, sols et produits de démolition connexes dans le lieu définitif de décharge de produits dangereux.
10 Guide pour la reconnaissance et l’enlèvement de l’amiante

Le guide complet sera édité dans un document à part et traduit en arabe et en anglais.

10.1 Introduction

Dans le cas des usines de transformation de l’amiante et pour les organismes gros consommateurs de produits en amiantes ciment, l’identification de ce fil out est facile et pratiquement évidente. C’est dans les bâtiments publics et privés que le problème se pose surtout lorsqu’il s’agit de maintenance de ces bâtiments, de la reconnaissance de l’amiante, de son enlèvement, de la réfection ou de la démolition du vieux construit.

Les directives et pratiques suivantes sont complètes pour les buildings, mais elles sont aussi applicables dans leurs détails à l’élimination de l’amiante des usines, ou celle de conduites en amiantes-ciment. La règle de base est :

- D’effectuer le travail par des entreprises agréées et des personnes bien formées et autorisées ;
- D’isoler le lieu de travail (sous-pressurisation pour éviter les émanations de poussières) :
- Doter les intervenants de tous les équipements de sécurité, de coupe, de récupération des déchets, de leur isolation et leur isolation et stockage ;
- D’opérer dans les conditions les meilleures pour enrayer toute exposition des travailleurs ou des riverains à des poussières d’amiante ;
- D’éviter les coups de matériaux d’amiante tant que possible, sinon de travailler en milieu humide ; etc.

10.2 Cas le plus complexe : maintenance et enlèvement d’amiante dans les bâtiments

L’opération d’entretien est destinée à maintenir en bon fonctionnement, dans des conditions de sécurité optimale, et la préservation d’un bâtiment ou d’un bien, ou l’une de ses parties du déclin. Ceci pourrait aussi être un lieu de travail, un parking, des équipements de travail, ou des moyens de transport (par exemple, un navire).

- La maintenance préventive ou curative est effectuée pour assurer la fonctionnalité du bien. Ce type d’activité est habituellement prévu à l’avance et doit être bien planifié.
- La maintenance est corrective ou réactive car elle peut être destinée à réparer un bien pour le remettre à fonctionner, à servir. C’est là une tâche non planifiée et imprévue, généralement associée à plus de risques et à des niveaux de risque plus élevés.

La maintenance n’est pas l’exclusif d’installateurs, de constructeurs de bâtiments et de mécanique. Elle est de la responsabilité de presque tous les travailleurs dans tous les secteurs et doit être réalisée dans presque tous les environnements de travail.

Aussi, la santé et la sécurité des travailleurs peuvent être affectées en cours de maintenance, mais aussi en cas d’entretien inadéquat ou même défaillant. La conception de l’équipement et de la zone de travail peut aussi avoir un impact significatif sur la santé et la sécurité des techniciens et ouvriers chargés de la maintenance.

10.2.1 Amiante et maintenance

Comme avancé, l’amiante est le nom de groupe de plusieurs naturels silicates fibreux qui peuvent être séparés en minces filets, durables, qui peuvent s’éparpiller dans l’ambiance, en fibrilles inhalables, d’où le danger. L’amiante a été largement utilisé en raison de ses propriétés réfractaires.
donc de résistance à la chaleur, sa résistance à la traction, sa résistance aux acides et autres produits chimiques en dehors des bases. C’est aussi un bon isolant, et peut présenter une laine de forte résistance pour être tissée (chrysotile, courroies de transmission, blouses, gans,...). Les formes principales sont les suivantes:

- Chrysotile ou amianté blanc;
- Crocidolite ou amianté bleu;
- Amosite, également connu aussi sous le nom grunérite ou amianté brun;
- Anthophyllite;
- Actinolite.

La première et dans une moindre mesure, la deuxième et la troisième ont été les principales variétés d’amianté les plus utilisées. Les deux autres dont naturellement moins abondantes.

10.2.2 Aperçu des risques résultant de l’exposition à l’amianté

L’amianté est un matériau très friable. Selon le degré de liaison de l’amianté dans un matériau ou produit et le degré de perturbation, les fibres microscopiques d’amianté sont libérées dans l’air en quantités plus ou moins grandes. Lorsque ces fibres sont inhalées, elles peuvent pénétrer dans les poumons, peuvent y rester pendant de nombreuses années car elles sont très résistantes et ne sont donc pas solubles. Au fil du temps, elles s’incrustent dans les branchies et la plèvre des poumons, dans la langue, la gorge ou tout autre tissu, provoquent des centres d’irritation continue, d’où cancerisation. Ils peuvent aussi provoquer des cicatrices et des inflammations. Ceci peut affecter la respiration et généralement des décennies plus tard, conduire à des problèmes de santé graves.

En fonction du type de fibres et le niveau et la durée de l’exposition, les problèmes de santé peuvent se développer :

- En asbestose, une maladie pulmonaire chronique qui peut causer de l’essoufflement, de la toux et des dommages pulmonaires permanents;
- En cancer du poumon;
- En mésothéliome, un cancer des fines membranes qui tapissent la poitrine et l’abdomen;
- En des lésions pleurales bénignes, appelées plaques pleurales.

Un fumeur qui inhale de l’amianté est 50 fois plus susceptible de développer un cancer du poumon qu’un non-fumeur qui n’a pas été exposé à l’amianté.
Il n’y a pas de niveau sécuritaire d’exposition à l’amiante. Le plus on est exposé, le plus le risque de développer une maladie liée à l’amiante. Le temps entre l’exposition à l’amiante et les premiers signes de la maladie peut s’étendre jusqu’à 30 ans.

Il est essentiel pour toute personne qui a été en contact avec de l’amiante, de vérifier par auscultation d’un médecin du travail si l’un des symptômes suivants apparaît:

- Essoufflement, respiration sifflante ou enroulement;
- Une toux persistante qui s’aggrave au fil du temps;
- Sang dans les expectorations (fluide) crachées par les poumons;
- Douleur ou oppression dans la poitrine;
- Difficulté à avaler;
- Gonflement du cou ou du visage;
- Perte d’appétit;
- Perte de poids;
- Fatigue ou anémie.

10.2.3 Zones de bâtiments susceptibles de contenir de l’amiante

Bien que l’utilisation de l’amiante a été interdite, des millions de mètres cubes de matériaux contenant de l’amiante sont encore en place dans les bâtiments existants en Europe. C’est aussi dire qu’il est vain de penser à pourvoir se débarrasser totalement de l’amiante y compris dans les pays occidentaux. Typiquement, ces matériaux peuvent être présents sous les formes suivantes.

En vrac:

- Amiante cartons et papier pour l’isolation thermique (cheminées, fours, gaz ou convecteurs électriques, radiateurs, etc.), joints et protection thermique de surface;
- Plaques pour faux plafonds ou revêtements ignifuges, portes et cloisons coupe-feu, cloisons légères.

Fils ou tissus:

- Fil en cordon ou corde, calfeutrage et matériau de revêtement isolant (porte de chaudière, chauffage, tuyauterie de gaz d’échappement des moteurs, etc.);
- Bandes de tissu pour protection contre la chaleur;
- Rubans isolants électriques (appareils électriques et réseaux de gaines);
- Résistant au feu, isolation acoustique ou l’expansion de l’étanchéité des joints sur les structures ou dans des partitions.

Produits en amiante-ciment:

- Feuilles (tôles) planes ou ondulées, tuiles, ardoises et autres panneaux de toiture;
- Rebords de fenêtres, feuilles de revêtement de façade;
- Cloison interne et panneaux, et faux plafonds;
- Autres panneaux ou étagères de construction, formes permanentes;
- Conduits de cheminées, conduits de ventilation, tuyaux de descente, vide-ordures; Approvisionnement en eau et tuyaux drainage;
- Clapets coupe-feu et panneaux ignifuges;
- Jardinières et articles de jardin.

Incorporé dans différents liants (résines, bitumes, etc.):
- Carrelage de sol (vinyle-amianté), linoléum;
- Adhésifs pour divers revêtements de sol;
- Mastics (vitrage, etc.);
- Textures de revêtements et peintures;
- Imperméabilisation de toit en feutres bitumineux, en rouleaux ou en feuilles toitures, revêtements bitumineux d’isolation thermique;
- Joint Imperméable, joint de dilatation, de plomberie, moteur, etc., joint de fermeture et étanchéité;
- Nivellement et couches de finition pour les planchers et cloisons intérieures,
- Carrelage mortiers-colles, adhésifs et revêtements imperméables;
- Revêtements et mortiers à base de plâtre pour la protection incendie;
- Matériaux de friction (plaquettes de frein pour les ascenseurs, moteurs et machines diverses);
- Composants d’isolation électrique à base de résine.

Les matériaux contenant de l’amiante peuvent donc être rencontrés n’importe où dans un bâtiment. Plombiers, tuyautiers, chauffagistes, électriciens, couvreurs, installateurs de faux plafond, maçons, carreleurs, ouvriers de peinture, artisans de plaques de plâtre, les ingénieurs de levage, etc. peuvent tous respirer la poussière d’amiante lors d’opérations en apparence inoffensifs.

10.2.4 Une approche structurée pour l’entretien

10.2.4.1 Planification : la sécurité et la gestion de la santé, des responsabilités claires

Pour assurer la sécurité et la santé des travailleurs, les employeurs doivent fournir à l’organisation de travail nécessaire, un équipement approprié, les systèmes de sécurité de travail, la formation, l’information et la surveillance.

L’employeur ou le mandataire doit s’assurer que tout matériau contenant de l’amiante doit être traité lors des travaux envisagés. S’il ya des doutes, des échantillons doivent être analysés par un laboratoire accrédité.

En Europe, le “Guide des meilleures pratiques” publié par SLIC exige également que les employeurs :
- fournissent une formation adéquate afin que les employés peuvent reconnaître les matériaux susceptibles de contenir de l’amiante et de comprendre ce qu’il faut faire et quand, et s’il existe des matériaux susceptibles de contenir de l’amiante,
obtiennent et mettent à disposition une information fiable sur la présence ou l'absence de matériaux contenant de l'amiante, par exemple, de plans de construction et / ou des architectes de construction (En Europe, certains États exigent une personne responsable de qui produit un inventaire des matériaux contenant de l'amiante dans un bâtiment);

veillent à ce que de bons dossiers soient conservés sur les matériaux qui sont confirmés contenter ou ne pas contenir de l'amiante (soit au sein de l'organisation responsable du bâtiment, soit son propriétaire);

fournissent des informations par écrit sur le site en ce qui concerne la présence de matériaux contenant de l'amiante connus, y compris un inventaire de l'amiante et les signes d'alerte le cas échéant;

fournissent des instructions écrites sur les procédures à suivre si des matériaux contenant de l'amiante sont rencontrés de façon inattendue.

Dans les cas où il y a plusieurs entrepreneurs impliqués dans les travaux d'entretien d'un bâtiment, un coordonnateur doit être désigné pour assurer une communication efficace entre toutes les parties concernées.

10.2.4.2 Évaluation des risques

Avant toute intervention, une évaluation globale des risques doit être menée et des mesures préventives doivent être mises en place. Tout processus d'évaluation des risques doit:

• impliquer les employés et les représentants des travailleurs, y compris les consulter sur les risques et les mesures de prévention au travail, et fournir des informations sur les résultats de l'évaluation des risques;

• tenir compte des différences individuelles des travailleurs (degré d'exposition) dans l'évaluation des risques;

• rechercher les risques (issus de l'activité au travail ou d'autres facteurs, par exemple la configuration des lieux);

• décider qui pourrait être affecté par l'amiante et comment, et identifier les groupes de travailleurs qui pourraient être les plus exposés au risque;

• évaluer l'ampleur des risques encourus;

• décider si les précautions existantes sont adéquates ou si plus de contrôle et des mesures préventives doivent être introduits;

• prendre des mesures: planifier la mise en œuvre, qui fait quoi et quand;

• surveiller et examiner les différentes étapes de travail;

• enregistrer les résultats

L'évaluation des risques pour les travaux d'entretien qui implique éventuellement l'amiante doit être basée sur des informations claires sur l'endroit où se trouve l'amiante, ce qui peut nécessiter une enquête menée par des experts.

Sous réserve des règlements nationaux, des matériaux contenant de l'amiante qui sont dans un état sûr (c'est-à-dire, en bon état ou enfermés ou encapsulés) peuvent être laissés en place, à condition qu'il y ait un suivi et une gestion efficace de la matière retenue en place. Dans certaines réglementation, des États membres de la communauté européenne exigent que les matériaux contenant de l'amiante doivent être enlevés tant que cela est possible.
Les dangers et les risques qui en résultent doivent être évalués pour les sites spécifiques. Basé sur des mesures dans des circonstances similaires, l’exposition probable des travailleurs et des voisins (occupants, autres sous-traitants) doit être évaluée. Ces données devraient être utilisées pour préparer des instructions écrites claires pour chaque emploi. Les instructions doivent détailler les mesures de protection techniques, organisationnelles et personnelles, expliquer les méthodes et voies de communication, donner des directives claires pour les cas d’urgence et fournir des informations suffisantes pour permettre l’estimation d’une exposition possible.

Autant l’évaluation des risques et les instructions doivent être communiquées à tous les travailleurs concernés, elles devraient également être rendues aisément accessibles sur le site d’intervention pour référence.

10.2.4.3 Notification et licences

Les travaux d’entretien impliquant l’amiante doivent être notifiés à l’autorité nationale compétente. À condition que "l'exposition des travailleurs soit sporadique et de faible intensité, et quand il est clair d’après les résultats de l'évaluation des risques que la limite d'exposition à l'amiante ne sera pas dépassée dans l'air du lieu de travail», une notification peut ne pas être nécessaire " lorsque le travail implique:

- Des activités courtes, non continues d’entretien durant lesquelles seuls les matériaux non friables sont manipulés;
- le retrait sans détérioration de matériaux non dégradés dans lesquels les fibres d’amiante sont fermement liées dans une matrice;
- encapsulations et gainage de matériaux contenant de l’amiante qui sont en bon état;
- suivi et contrôle de l’air et collecte d’échantillons pour vérifier si un matériau spécifique contient de l’amiante.

En plus de la notification, dans certains États membres CEE (ex., Royaume-Uni, Allemagne) les sous-traitants peuvent avoir besoin d’obtenir des licences spéciales pour les travaux impliquant l’amiante. Il s’agit essentiellement de travaux de désamiantage et de démolition.

10.2.4.4 Formation

Avant de débuter tout travail qui pourrait comporter une manipulation de l’amiante ou des produits amiantés, toute personne impliquée doit être formée pour le faire de façon sécuritaire. Dans le cadre du travail, les formations devraient être périodiques et enregistrées, avec des évaluations et des cours de recyclage. Une formation supplémentaire ne devrait être réalisée que si les méthodes de travail changent.

La formation devrait être organisée et menée par un organisme de formation spécialisé. Cette formation devrait être donnée dans une langue facilement compréhensible par les travailleurs. Les enregistrements des cours de formation doivent être conservés.

Parmi plusieurs spécifications, le guide SLIC souligne également que «la formation des travailleurs de désamiantage doit comprendre des exercices pratiques afin que les stagiaires apprennent à utiliser et entretenir l’équipement qui affecte la sécurité (clôtures, équipement de protection individuelle, équipement de protection respiratoire, la décontamination personnelle, et la poussière d’équipement de suppression et d’équipement d’élimination contrôlée) ».

Les employeurs ou leurs représentants autorisés et les superviseurs devraient recevoir une formation spéciale:

- La législation pertinente en application, les rôles et les responsabilités;
- La réalisation d'une évaluation des risques et l'élaboration d'un plan de travail (instructions spécifiques écrasées données sur site d’intervention);
- Surveillance des travaux;
- Inspection de l'équipement (par exemple, unité de décontamination, enceinte isolée, équipement de suppression, etc.);
- Élimination de l'amiante ou matériaux contenant de l'amiante.

En dehors de la formation complète des travailleurs en général, des instructions spécifiques à la tâche devraient également être données, en particulier si les intervenants peuvent rencontrer des caractéristiques inhabituelles associées à de l'amiante installé par voie de métier particulière. Toutefois, conformément à la directive 2003/18/CE, les travailleurs et leurs représentants doivent recevoir une information adéquate sur toutes les questions pertinentes, telles que:

- Les risques pour la santé de l’exposition à la poussière provenant de l’amiante ou des matériaux contenant de l’amiante;
- Les valeurs limites réglementaires et la nécessité de surveiller l’amiante dans l’air; Prescriptions d’hygiène, y compris la nécessité de s’abstenir de fumer;
- Les précautions à prendre en ce qui concerne le port et l’utilisation d’équipements de protection et des vêtements;
- Précautions particulières destinées à minimiser l’exposition à l’amiante.

10.2.4.5 Usage des équipements appropriés

Les équipements appropriés pour les postes doivent être fournis. Il doit y avoir une formation et une supervision adéquate afin de s'assurer qu'ils sont utilisés correctement. Ils doivent être inspectés et entretenus régulièrement et les documents connexes doivent être conservés.

Selon que l'évaluation des risques déclare le travail comme présentant un risque plus faible qui peut ne pas être déclaré aux autorités, ou un risque élevé à déclaration obligatoire, différentes gammes d’équipement sont nécessaires.

- Equipements électriques et outils à main spéciaux qui produisent peu de poussière et peuvent avoir un système d’extraction de l’amiante intégré;
- Un éclairage approprié;
- Des systèmes d'alimentation de secours (en cas de déclaration de travail à haut risque);
- Des matériaux pour séparer la zone de travail (barrières, panneaux d’avertissement, etc.), les enceintes, la sous-pressurisation pour conserver les poussières dans l’enceinte, la suppression de la poussière, et les unités de filtration de l’eau (en cas de déclaration travail à haut risque); L’équipement de secours (extincteurs, etc.); unités de décontamination y compris les installations d’hygiène personnelle (en cas de déclaration travail à haut risque); Systèmes et conteneurs pour le nettoyage et l’élimination
- Systèmes de mesure, y compris les générateurs de fumée pour l'identification de fuite (en cas de déclaration travail à haut risque);
- Équipement de protection individuelle comme des combinaisons, des bottes, des masques respiratoires, des systèmes respiratoires alimentés en air.

Une attention particulière doit être portée au choix, au port et à l'entretien de l'équipement de protection respiratoire. La sélection ne doit pas seulement considérer la nature de l'emploi et les
déplacements du travailleur, mais aussi les différences individuelles (forme de visage, aptitude médicale). Des conseils pour choisir le bon équipement peuvent être trouvés dans diverses brochures d’information nationales et internationales (voir Ressources en annexe) et dans le guide SLIC [4]. Dans tous les cas où l’équipement doit être utilisé, il est de la responsabilité des superviseurs de s’assurer qu’il n’est pas seulement utilisé mais qu’il est de fait utilisé correctement.

10.2.4.6 Surveillance

L’employeur ne doit pas seulement garantir un contrôle approprié sur place, mais dans le cas de déclaration de travail à haut risque, il doit également veiller à ce que l’échantillonnage de l’air est effectué afin de prouver la conformité avec tous les règlements pertinents. Selon directive européenne sur la protection des travailleurs de l’amiante 83/477 / CEE modifiée par la directive 2003/18 / CE, l’échantillonnage de l’air doit être effectué par du personnel qualifié, et les échantillons doivent être analysés dans des laboratoires équipés pour le comptage des fibres.

La surveillance doit comprendre:

- L’échantillonnage de base, par exemple avant le début des travaux;
- La surveillance personnelle, pour mesurer la concentration de fibres dans la zone de respiration. Cela fournit également une base pour vérifier si le facteur de l’équipement de protection respiratoire individuel est adéquat. Les expositions doivent être enregistrées et la tenue dans des registres pour un minimum de 40 ans;
- La surveillance de l’environnement;
- L’essai d’étanchéité;
- Le suivi de nettoyage de propreté des lieux;

L’employeur ou son mandataire doivent agir rapidement selon les résultats de la surveillance et de suivi.

10.2.4.7 La surveillance médicale

Les employés dont le travail implique une exposition à l’amiante sont tenus de subir un examen médical avant de commencer leur travail. Des examens ultérieurs sont nécessaires au moins une fois tous les trois ans (ou plus fréquemment si exigé par les réglementations nationales), et par la suite, aussi longtemps que l’exposition à l’amiante continue.

La conférence européenne de 2003 sur l’amiante a demandé à la Commission européenne et le Comité des inspecteurs principaux du travail (SLIC) pour favoriser la poursuite d’une surveillance médicale post-exposition. Ainsi, certains États membres (Allemagne par exemple) exigent que le suivi par des examens médicaux soit offert après la cessation d’emploi.

Pour les autres employés avec un risque d’exposition à l’amiante, une évaluation doit être faite si la surveillance médicale est recommandée ou exigée par la réglementation, sur la base de l’évaluation des risques.

Les maladies comme l’amiastose, le cancer du poumon ou des mésothéliomes doivent être déclarés en conformité avec les réglementations. Il faut s’assurer que tous les travailleurs peuvent être facilement identifiés dans ces documents.

10.2.5 Guides

Bien qu’il existe différentes directives disponibles en Europe, une vue d’ensemble correcte au niveau européen est donnée par le Comité principal des inspecteurs du travail, SLIC, dans leur guide [4]. De nombreux États membres ont également publié des guides (lignes directrices = guidelines) en tenant compte des spécificités nationales (voir Ressources en fin de document).
Des exemples de guides de bonnes pratiques

Basées sur l'expérience pratique, les directives suivantes ont été mises au point par l'INRS et les fonds d'assurances françaises pour servir de règle pour les entreprises de tous les secteurs qui doivent faire face à l'amiante. Plusieurs entreprises appliquent avec succès ces directives dans leur pratique quotidienne.

Ouverture du toit en amianté-ciment pour installer un conduit d'évacuation d'air.

Bien que plusieurs solutions puissent être utilisées, la plus satisfaisante consiste à enlever la totalité de la feuille de couverture sans le casser et de la remplacer par une tôle de toiture sans amianté pré-percée.

La feuille de l'amiante-ciment devrait être retirée de l'intérieur de l'espace de toit si la configuration de la construction le permet. Ce mode de fonctionnement présente l'avantage d'éviter le risque d'une chute à partir d'une hauteur, ou à travers de la feuille de couverture, et de permettre de renforcer les structures de toit à nettoyer.

Pour enlever la feuille ciment de toiture en amiant.

- Fournir des équipements d'accès haut niveau de sécurité de l'espace de toit à l'intérieur avec son sol couvert par des bâches en plastique, et de l'espace sur le toit à l'extérieur;
- Interdire et/ou restreindre l'accès de la zone de travail;
- Désigner un opérateur avec une combinaison avec capuche, des gants et un filtrage jetable demi-masque (EN 149 FFP3);
- Pulvériser de l'eau contenant un agent tensio-actif sur la feuille de couverture;
- Dévissez les fixations ou les couper avec un outil à main, tandis que les surfaces locales sont nettoyées à l'aide d'un aspirateur à filtre HEPA (filtre H13 conforme à la norme EN 1822);
- Soulever et retirer la feuille de couverture sans la casser et la mettre délicatement dans l'enveloppe prévue à sa disposition;
- Nettoyez les éléments de structure (poutres, etc.), tôles de toiture adjacents et équipement d'accès de haut niveau à l'aide de l'aspirateur à filtre HEPA, puis essuyez avec un chiffon humide;
- Réinstaller une feuille de toiture de dimensions appropriées pré-percée sans amianté;
- Mettre les feuilles de plastique, des chiffons, combinaison, des gants et un demi-masque jetable dans un sac de déchets d'amiante.

Si la feuille de ciment de toiture en amiant doit être coupée:

- Interdire et/ou restreindre l'accès sous la zone de travail;
- Fournir opérateur avec combinaison avec capuche, des gants et un filtre demi-masque jetable (EN 149 FFP3);
- Assurer l'accès à haut niveau de sécurité à l'intérieur et l'extérieur de l'espace sur le toit;
- Positionner un récipient en plastique rigide et supporté par des accessoires de tout autre système adapté à l'emplacement de coupe. Fixez soigneusement et sceller le conteneur à l'aide de ruban adhésif ou de la mousse d'étanchéité. Ils sont destinés par la suite à être mis dans le sac de déchets d'amiante;
• Mouiller soigneusement la surface externe de la feuille de couverture par de l'eau contenant un agent tensio-actif et appliquer l'adhésif sur le papier peint à l'emplACEMENT de coupe à pratiquer;
• Couper la feuille de couverture en utilisant une scie à main, tandis que l'aspirateur nettoie localement les surfaces (aspirateur à filtre HEPA (filtre H13 conforme à la norme EN 1822);
• Essuyez les bords de la coupe avec un chiffon humide;
• Détacher le récipient et le mettre dans le sac de déchets d'amiante. Les sacs doivent être éliminés dans des installations spéciales de gestion des déchets conformément à la loi;
• Mettre les chiffons, combinaison, gants et demi-masque jetable dans le sac de déchets d’amiante.

Remplacement d’un tube fluorescent dans une unité d’éclairage fixée à un mur couvert de l’amiante pulvérisé
• Fournir un opérateur avec combinaison avec capuche, des gants et un filtre demi-masque jetable (EN 149 FFP3);
• Protéger le parquet (le sol) avec des bâches en plastique;
• Passer l’aspirateur sur l’unité d’éclairage à l’aide d’un aspirateur à filtre HEPA (H13 filtre conforme à la norme EN 1822);
• Retirer le couvercle de l’unité d’éclairage et le vider de son intérieur et de sa fixation (sa monture);
• Changer tube fluorescent;
• Remettre le couvercle de l’unité d’éclairage;
• Plier les bâches en plastique et les mettre dans le sac de déchets d’amiante, avec la combinaison, sac de nettoyage à vide et/ou filtre, gants et demi-masque jetable.

10.3 Résumé de d’ensemble des dispositions législatives applicables en Europe

La directive 89/391/CEE du Conseil CEE relative à l’introduction de mesures visant à promouvoir l’amélioration de la sécurité et de la santé des travailleurs au travail. Cette directive vise à assurer un degré plus élevé de protection des travailleurs au travail par la mise en œuvre des mesures de prévention pour se prémunir contre les accidents du travail et maladies professionnelles, et à travers l’information, la consultation, la participation équilibrée et la formation des travailleurs et de leurs représentants.

En outre, la directive 83/477 / CEE relative à la protection des travailleurs contre les risques liés à l’exposition à l’amiante au travail et ses amendements, traite spécifiquement de la protection des travailleurs contre les risques liés à l’exposition à l’amiante au travail. Les États membres de la CEE ont transposé les dispositions de cette directive dans leurs législations nationales, alors que parfois, ils y ont complété des exigences supplémentaires.

La directive 89/656 / CEE sur les exigences en matière de santé et de sécurité minimales pour l'utilisation par les travailleurs d'équipements de protection individuelle au travail. Cette directive fixe des exigences minimales pour les équipements de protection individuelle (EPI) utilisés par les travailleurs au travail.

La directive 89/686 / CEE concernant le rapprochement des législations des États membres relatives aux équipements de protection individuelle. Cette directive stipule que les équipements de
protection individuelle doivent être conformes aux dispositions communautaires relatives à la conception et la production par rapport à la sécurité et à la santé.

Certains États membres ont mis en place des exigences supplémentaires. : exemple de la France :

Le chef d’entreprise est tenu de prendre toutes les mesures visant à réduire les niveaux d’exposition à l’amiante. En France, le valeur limite d’exposition à l’amiante au travail est de 0,1 fibre/cm³ pour une heure.

Les employés sont tenus de présenter un certificat médical d’aptitude avant de pouvoir attribuer un emploi dans lequel ils peuvent être exposés à la poussière d’amiante. L’employeur doit établir une fiche d’exposition pour chaque travailleur, en précisant le type et la durée du travail, les procédures, les équipements utilisés de travail et le niveau attendu de l’exposition. Les employés ont un droit légal à une étroite surveillance médicale sur une base annuelle. Lorsque le salarié quitte l’entreprise, il faut lui donner un certificat d’exposition établie par l’employeur et le médecin du travail. Les dossiers médicaux doivent être conservés pendant 50 ans.

Dans le cas des opérations de maintenance et d’entretien susceptibles d’entraîner une exposition aux poussières d’amiante, le chef d’entreprise est tenu d’établir un mode opératoire général conformément à la directive. Ce document est soumis à l’avis du médecin du travail et de la santé, les services de sécurité et représentants services de suivi des conditions de travail. Il doit aussi être transmis à l’inspection du travail et aux organismes de prévention français. Toutes les modifications des conditions de travail doivent être dûment déclarées.

Exemple de l’Allemagne

Le Comité allemand sur les substances dangereuses (AGS) a émis une règle technique (numéro 519) sur «Amiante -Démolition, reconstruction ou entretien". Les règles techniques pour les substances dangereuses (TRGS) reflètent l’état de la technologie, la sécurité et l’hygiène de la santé et du travail ainsi que d’autres connaissances précises relatives aux activités impliquant des substances dangereuses. Elles sont annoncées par le Ministère Fédéral du Travail et des Affaires Sociales dans la Gazette Fédérale sur le Travail et fournissent des directives détaillées et obligatoires pour les entreprises. Les règles techniques exigent entre autres, que l’examen de suivi médical doit être offert après la cessation d’emploi.
11 Atelier de restitution

L’organisation d’un atelier a fait l’objet d’une activité à part qui s’est déroulée en décembre 2014. Cet atelier a été tenu afin de présenter les résultats de l’étude (phase 1, phase 2 et guide de bonne pratique) et recenser les opinions des différents intervenants.

L’atelier a été réalisé en une journée pour un groupe de personnes invitées par le Maître d’ouvrage. L’ordre du jour a évoqué les points suivants :

3. La nécessité et la présentation de textes de loi pour organiser et renforcer l’action dans ce domaine vital pour l’économie du pays.

4. Les problèmes de mise en décharge de déchets dangereux (décharges apparentes, ou enfouissement en subsurface avec récupération des terrains pour un minimum d’usage, etc.), la multiplication de ce type de décharges à l’échelle du pays, et l’œuvre pour une meilleure gestion de l’espace dans les conditions les plus sécuritaires seront aussi abordés.

Un PV de l’atelier avec la liste des présents sont joints en annexe de ce rapport (Annexe 2). Ci dessou quelques photos de la réunion :
ANNEXES

Annexe 1 : Projet de texte réglementant l’interdiction de l’amiante en Tunisie (en français et en arabe)

Annexe 2 : PV de l’atelier de restitution et liste des présents

Annexe 3 : Guide méthodologique pour la gestion des déchets en amiante (en français, en anglais et en arabe)
Annexe 1

Texte réglementant l’interdiction de l’amiante en Tunisie

Le Premier Ministre

Sur proposition du Ministre chargé de l’Environnement
Vu la loi n+ 97-37 du 2 juin 1997 relative au transport par route des matières dangereuses,
Vu le décret n° 2000-2339 du 10 octobre 2000 fixant les règles techniques relatives à l’équipement et à l’aménagement des véhicules utilisés pour le transport des matières dangereuses par route,
Vu le décret 2005-2317 du 22 aout 2005 portant création d’une agence nationale de gestion des déchets et fixant sa mission, son organisation administrative et financière ainsi que les modalités de son fonctionnement,
Vu le décret n° 2005-2933 du premier novembre 2005 fixant les attributions du ministère de l’environnement et du développement durable,
Vu l’avis des ministres chargés de l’industrie, de l’environnement, du commerce, de l’artisanat, de l’équipement et de l’habitat, des affaires sociales, de la santé, des affaires sociales, et du travail,
Vu l’avis du parlement
Vu l’avis du tribunal administratif

Décrète

Article 1. Au sens du présent décret, on entend par :

1° amiante : la forme fibreuse des minéraux suivants repris ci-après appartenant au groupe des serpentine et des amphiboles :
 a) l’actinolite ;
 b) l’amosite ou grunérîte (amiante brun);
 c) l’anthophyllite ;
 d) la chrysotile (amiante blanc);
 e) la crocidolite (amiante bleu);
 f) la trémolite

Sont assimilés à l’amiante :
 a) les matériaux contenant de l’amiante;
 b) les matériaux qui ont été en contact ou ont été contaminés par les fibres d’amiante et qui ne peuvent être décontaminés sur place à l’aide d’un aspirateur et/ou à l’eau;
2° amianté friable : amianté dont les fibres se dégagent facilement et dont la liste indicative des applications est reprise en annexe 1ᵉʳ du présent décret ;
3° amianté non friable : amianté dont les fibres sont liées fortement à un liant et dont la liste indicative des applications est reprise en annexe 1ᵉʳ du présent décret ;
4° encapsulation de l’amianté : fixation de l’amianté par revêtement de surface, par imprégnation ou par isolation totale ;
5° revêtement de surface : procédé consistant en l’application superficielle d’un enduit directement sur l’amianté ;
6° imprégnation : procédé consistant à appliquer un liant dilué qui va pénétrer profondément dans le revêtement par capillarité, de préférence jusqu’au support et polymériser ensuite soit directement soit par application d’un deuxième composant ;
7° encoffrement : procédé consistant en la reconstitution d’une paroi sans contact avec le revêtement (doublage) ou projection d’un enduit sur support ancré par chevillage au travers du revêtement ;
8° zone confinée globale : zone de travail déclarée étanche au moyen d’un test fumée et mise en dépression au moyen d’extracteurs munis de filtres absolus. Les parois sont constituées par une double feuille de plastiques et l’accès se fait par des sas ;
9° zone balisée : périmètre de sécurité rendant la zone de travail inaccessible au public par des rubans et balises et affiches réglementaires ;
10° méthode des sacs à gants : procédé destiné à enlever de petites quantités d’amianté friable (notamment calorifuge, vannes, joints) dans une zone confinée locale hermétiquement fermée et réalisée en matière plastique permettant la manipulation du support au moyen de gants.

Article 2

I. Au titre de la protection des citoyens et des travailleurs, sont interdites la manipulation, la fabrication, la transformation, la vente, l’importation, la mise sur le marché national et la cession à quelque titre que ce soit de toutes variétés de fibres d’amianté, que ces substances soient ou non incorporées dans des matériaux, produits ou dispositifs.

II. Au titre de la protection des consommateurs, sont interdites la fabrication, l’importation, la mise sur le marché national, l’exportation, la détention en vue de vente, l’offre, la vente et la cession à quelque titre que ce soit de toutes variétés de fibres d’amianté et de tout produit en contenant.

III. Les interdictions prévues aux I et sous titres II ne font pas obstacle à l’accomplissement des obligations résultant de la législation relative à l’élimination des déchets.

Article 3

L’interdiction de détention en vue de la vente, de mise en vente et de cession à quelque titre que ce soit ne s’applique pas aux véhicules automobiles d’occasion, ni aux véhicules, matériels et appareils agricoles et forestiers d’occasion mis en circulation avant la date d’entrée en vigueur du présent décret, à l’exception de ceux dont les plaquettes de freins à disque contiennent de l’amianté.

Cette interdiction ne s’applique ni aux véhicules automobiles ni aux véhicules, matériels et appareils agricoles et forestiers cédés en vue de leur destruction.

Article 4
Sans préjudice de l’application des sanctions pénales en cas de violation des dispositions de l'article 1er du présent décret, le fait de fabriquer, importer, mettre sur le marché national, exporter, offrir, vendre, céder à quelque titre que ce soit ou détenir en vue de vente toutes variétés de fibres d’amiante ou tout produit en contenant, en violation des dispositions du I de l’article premier, est puni d’un emprisonnement de deux mois à deux ans et d’une amende de 100 à 50 000 dinars ou de l’une de ces deux peines seulement.

CHAPITRE 1er: Exposition à l’amiante dans les immeubles bâtis

Article 5

Le présent décret s'applique à tous les immeubles bâtis, construits avant la fin de l’année 2014, qu’ils appartiennent à des personnes privées ou à des personnes publiques, à la seule exception des immeubles à usage d'habitation comportant un seul logement et des parties privatives des immeubles collectifs à usage d’habitation.

Article 6

Les propriétaires des immeubles mentionnés dans l’article 1er doivent rechercher la présence de flocages, de bardages, de calorifugeages, d'isolations, de toitures, ou la présence faux-plafonds, contenant de l’amiante dans les immeubles construits avant la fin de l’année 2014.

Pour répondre à ces obligations de recherche, les propriétaires font appel à un contrôleur technique agréé, ou à un technicien de la construction agréé ayant contracté une assurance professionnelle pour ce type de mission afin qu’il procède à une recherche de la présence de flocages, de bardages, de calorifugeages, d'isolations, de toitures ou de faux plafonds.

En cas de présence de flocages, de bardages, de calorifugeages, d'isolations, de toitures ou de faux plafonds et si un doute persiste sur la présence d'amiante, les propriétaires font faire un ou des prélèvements représentatifs par un contrôleur technique agréé ou un technicien de la construction agréé. Ce ou ces prélèvements font l'objet d'une identification et analyse par un organisme répondant aux prescriptions définies au deuxième alinéa de l'article 5.

Seul le contrôleur technique ou le technicien de la construction attestent de l'absence ou de la présence de flocages, de bardages, de calorifugeages, d'isolations, de toitures ou de faux plafonds, de canalisations et, le cas échéant, de la présence ou de l'absence d'amiante dans ces matériaux ou produits.

Le contrôleur technique agréé ou le technicien de la construction agréé mentionné au présent article doit satisfaire aux obligations définies à l'article 16.

Article 7

En cas de présence de flocages, de bardages, de calorifugeages, d'isolations, de toitures, de faux plafonds ou de canalisations contenant de l'amiante, les propriétaires doivent vérifier leur état de conservation.

A cet effet, ils font appel à un contrôleur technique agréé ou à un technicien de la construction agréé ayant contracté une assurance professionnelle pour ce type de mission et répondant aux prescriptions du précédent article, afin qu'il vérifie l'état de conservation de ces matériaux et produits en remplissant la grille d'évaluation définie par arrêté conjoint des Ministres chargés de l’Environnement, du Travail, de la Santé et de l’Habitat.

Cette grille d'évaluation tient compte notamment de l'accessibilité du matériau, de son degré de dégradation, de son exposition à des chocs et vibrations ainsi que de l'existence de mouvements d'air dans le local.

Article 8

En fonction du résultat du diagnostic obtenu à partir de la grille d'évaluation mentionnée à l'article précédent, les propriétaires procèdent :

- soit à un contrôle périodique de l'état de conservation de ces matériaux et produits dans les conditions prévues à l'article 7; ce contrôle est effectué dans un délai maximal de deux ans à compter de la date de remise
au propriétaire des résultats du contrôle, ou obligatoirement à l’occasion de toute modification substantielle de l’ouvrage ou de son usage ;
- soit, selon les modalités prévues à l’article 9, à une surveillance du niveau d’empoussièrement dans l’atmosphère par un organisme agréé ;
- soit à des travaux de confinement ou de retrait de l’amiante, selon les modalités prévues au dernier alinéa de l’article 9.

Article 9
Si le niveau d’empoussièrement est inférieur ou égal à la valeur de 0,010 fibre/cm³, les propriétaires procèdent à un contrôle périodique de l’état de conservation des matériaux et produits, dans les conditions prévues à l’article 3, dans un délai maximal de deux ans à compter de la date à laquelle leur sont remis les résultats du contrôle ou obligatoirement à l’occasion de toute modification substantielle de l’ouvrage ou de son usage.
Si le niveau d’empoussièrement est supérieur à 0,010 fibre/cm³, les propriétaires procèdent à des travaux de confinement ou de retrait de l’amiante, qui doivent être achevés dans un délai de trente-six mois à compter de la date à laquelle leur sont remis les résultats du contrôle.
Pendant la période précédant les travaux, des mesures conservatoires appropriées doivent être mises en œuvre afin de réduire l’exposition des occupants et de la maintenir au niveau le plus bas possible, et dans tous les cas à un niveau d’empoussièrement inférieur à 0,010 fibre/cm³. Les mesures conservatoires ne doivent conduire à aucune sollicitation des matériaux et produits concernés par les travaux.

Article 10
En cas de travaux nécessitant un enlèvement des matériaux et produits mentionnés par le présent décret, ceux-ci devront être transportés et éliminés conformément aux dispositions des lois relatives à l’élimination des déchets et à la récupération et transport des matériaux susvisés.

Article 11
A l’issue des travaux et avant toute restitution des locaux traités, le propriétaire fait procéder à un examen visuel, par un contrôleur technique ou un technicien de la construction répondant aux prescriptions de l’article 12, de l’état des surfaces traitées et, dans les conditions définies à l’article 7, à une mesure du niveau d’empoussièrement après démantèlement du dispositif de confinement. Ce niveau doit être inférieur ou égal à 0,010 fibre/cm³. Si les travaux ne conduisent pas au retrait total des flocages, de bardages, de calorifugeages, d’isola tions, de toitures ou de faux plafonds, les propriétaires procèdent à un contrôle périodique de l’état de conservation de ces matériaux et produits résiduels dans les conditions prévues à l’article 7, dans un délai maximal de trois ans à compter de la date à laquelle leur sont remis les résultats du contrôle ou obligatoirement à l’occasion de toute modification substantielle de l’ouvrage ou de son usage.

Article 12
Les propriétaires constituent, conservent et actualisent un dossier technique regroupant notamment les informations relatives à la recherche et à l’identification des flocages, de bardages, de calorifugeages, d’isola tions, de toitures ou de faux plafonds, ainsi qu’à l’évaluation de leur état de conservation. Ce dossier doit préciser la date, la nature, la localisation et les résultats des contrôles périodiques, des mesures d’empoussièrement et, le cas échéant, des travaux effectués à l’issue du diagnostic prévu à l’article 7. Il est tenu à la disposition des occupants de l’immeuble bâti concerné, des agents ou services de contrôle de la santé publique ainsi que, le cas échéant, des inspecteurs du travail et des agents du service du contrôle de la qualité.
de l’environnement, et de prévention des organismes de sécurité sociale. Les propriétaires communiquent ce dossier à toute personne physique ou morale appelée à effectuer des travaux dans l’immeuble bâti et conservent une attestation écrite de cette communication.

Article 13
Les propriétaires des immeubles mentionnés dans l'article 1er produisent, au plus tard à la date de toute promesse de vente ou d’achat, un constat (dossier technique « amiante ») précisant la présence ou, le cas échéant, l’absence de matériaux et produits contenant de l’amiante mentionnés à l’annexe au présent décret. Ce constat indique la localisation et l’état de conservation de ces matériaux et produits.

Article 14
Le dossier technique "amiante" mentionné à l'article 13 est établi avant les dates limites suivantes :
- le 31 décembre 2017 pour les immeubles à usage d’habitation ;
- le 31 décembre 2018 pour les immeubles de bureaux, les établissements recevant du public, les immeubles destinés à l’exercice d’une activité industrielle ou agricole, les locaux de travail et les parties à usage commun des immeubles collectifs d’habitation.

Les propriétaires des immeubles mentionnés aux deux précédents alinéas tiennent à jour le dossier technique "amiante".

Article 15
Le dossier technique "amiante" mentionné à l'article 13 comporte :
1° La localisation précise des matériaux et produits contenant de l’amiante ainsi que, le cas échéant, leur signalisation ;
2° L’enregistrement de l’état de conservation de ces matériaux et produits ;
3° L’enregistrement des travaux de retrait ou de confinement de ces matériaux et produits et des mesures conservatoires mises en œuvre ;
4° Les consignes générales de sécurité à l’égard de ces matériaux et produits, notamment les procédures d’intervention, y compris les procédures de gestion et d’élimination des déchets ;
5° Une fiche récapitulative.

Le dossier technique "amiante" est établi sur la base d’un repérage portant sur les matériaux et produits figurant sur la liste définie à l’annexe du présent décret et accessibles sans travaux destructifs. Pour le réaliser, les propriétaires font appel à un contrôleur technique agréé, ou à un technicien de la construction ayant contracté une assurance professionnelle pour ce type de mission, satisfaisant aux obligations définies à l’article 16. Les analyses de matériaux et produits sont réalisées selon les modalités prévues au deuxième alinéa de l’article 9.

En cas de repérage d’un matériau ou produit dégradé contenant de l’amiante, le contrôleur technique agréé ou le technicien de la construction est tenu de le mentionner ainsi que les mesures d’ordre général préconisées.

Article 16
Le contrôleur technique agréé ou le technicien de la construction mentionné aux articles 13 et 15 doit n’avoir aucun lien de nature à porter atteinte à son impartialité et à son indépendance ni avec le ou les propriétaires, ou leur préposé, qui font appel à lui, ni avec aucune entreprise susceptible d’organiser ou d’effectuer des travaux de retrait ou de confinement des matériaux et produits prévus par le présent décret.
A compter du 1er janvier 2015, le contrôleur technique ou le technicien de la construction doit avoir obtenu une attestation de compétence justifiant de sa capacité à effectuer les missions décrites au présent décret.
Cette attestation de compétence est délivrée, à l'issue d'une formation et d'un contrôle de capacité, par des organismes dispensant une formation sanctionnée par un diplôme.

Article 16

I - Sont punis d’une amende de 100 à 50 000 dinars, selon la gravité de l’infraction, tous les propriétaires d’immeubles mentionnés au premier alinéa de l’article 9, de ne pas avoir procédé, à l’issue des travaux, à l’examen visuel et à la mesure d’empoussièrement exigés à la première phrase de l’article 15.

II - Sont punis d’une amende de 100 à 50 000 dinars selon la gravité de l’infraction :

1° Tous les propriétaires des immeubles mentionnés au premier alinéa de l’article 1er, de ne pas avoir satisfait à l’une des obligations définies par les articles 5, 6, 7, 8, 10 (troisième phrase) et 11;

2°- Les personnes morales peuvent être déclarées responsables pénalement, des infractions définies aux I et II ci-dessus.

La peine encourue par les personnes morales est l’amende suivant les modalités prévues par la loi.

3° - La récidive des infractions prévues au présent article est punie conformément aux dispositions du code pénal.

CHAPITRE 2°ème : Travaux d’enlèvement de l’amiante et la gestion des produits et déchets en contenant

Article 17. Les présentes dispositions réglementaires s’appliquent aux chantiers d’enlèvement, de décontamination ou d’encapsulation d’amiante, de bâtiments ou d’ouvrages d’art contenant de l’amiante y compris les installations annexes, parmi la liste des projets soumis à étude d’incidences et des installations et activités classées.

Article 18. L’accès au chantier est interdit au public. Des panneaux adéquats signalent cette interdiction.

Article 19. Les locaux où l’amiante est enlevé ou encapsulé sont vidés de leur contenu mobilier avant toute manipulation d’amiante. Le conditionnement d’air et/ou la ventilation dans ces locaux, locaux adjacents et locaux servant à l’entreposage de l’amiante sont mis hors service à l’exception des extracteurs maintenant la dépression des zones. Le contenu non déplaçable est protégé afin d’éviter une contamination par l’amiante.

Article 20. Les couloirs de dégagement et issues sont, en permanence, laissés libres de tout obstacle, notamment de tout matériel ou déchet.

Article 21. Les matériaux et plaques en amiante-ciment pourront être enlevés avec précaution dans une zone balisée sans être altérés. Tous les moyens doivent être utilisés pour empêcher la libération de fibres dans l’air comme l’humidification ou la fixation.

L’amiante friable utilisé notamment comme calorifuge, joints et cordes est enlevé par une méthode empêchant la libération de fibres dans l’air.

Sans préjudice des prescriptions relatives à la protection du travail, les calorifuges sont enlevés par la méthode des sacs à gants telle que définie à l’article 2 du présent décret.

Article 22. Les déchets d’amiante sont triés par catégorie et conditionnés en emballage étanche (épaisseur de 100 µm) avant d’être évacués de la zone confinée globale au travers du sas matériel où ils sont dépoussiérés et placés, ensuite, dans un second sac étanche en PE, PVC ou similaire (épaisseur de 200 µm) avant d’être transportés dans un lieu de stockage provisoire.

COMETE Engineering/PLINIOS SA
Les déchets tranchant, les plaques ondulées et les ardoises en amiante-ciment, sont conditionnés en emballages spécifiques : sacs à double paroi dont la paroi interne est en polyéthylène transparent (épaisseur d’au moins 80 µm) et la paroi externe en polypropylène tressé (épaisseur supérieure à 200 µm ou dont la paroi est constituée de bandelettes de polypropylène laminé d’un poids minimum de [100 g/m²]). Ils sont dépoissiérés avant d’être évacués de la zone confinée globale au travers du sac matériel.

Les doubles emballages, visés aux alinéas 1er et 2 du présent article, sont fermés hermétiquement et pourvus d’une étiquette indiquant clairement la présence d’amiante, avec la mention apposée « danger amiante ».

Le matériel qui ne peut être dépoissié est traité comme les déchets d’amiante.

Article 23. Le transport des déchets entre la zone de chantier et les conteneurs ou le local de stockage est réalisé en dehors des heures d’affluence des occupants de l’immeuble si le trajet des déchets d’amiante croise celui des occupants autres que ceux travaillant sur le chantier.

Article 24. En vue de leur transport, les déchets d’amiante conditionnés sont déposés soit dans des conteneurs maritimes fermés à clé, soit dans un local fermé à clé. Les conteneurs sont pourvus d’un marquage permettant d’identifier la nature, la composition et la quantité de déchets transportés. La mention “danger amiante” est apposée sur la porte du local de stockage.

Les conteneurs placés en voirie sont toujours entourés d’une palissade en matériau plein garantissant l’inaccessibilité, à l’exception de ceux placés pour chargement immédiat. Si les sacs que contiennent ces conteneurs ne sont pas tous fermés, car en cours de remplissage, ces conteneurs doivent être fermés à chaque arrêt de travaux, y compris en cas de pause.

Article 25. Les mesures d’atmosphère peuvent faire l’objet de conditions complémentaires.

Article 26. L’exploitant ou son représentant tient journalièrement un récapitulatif des déchets produits conformément au tableau visé à l’annexe 2 du présent décret.

Article 27. Les opérations de regroupement, de traitement, d’enfouissement technique ou d’élimination sont effectuées conformément à la réglementation en vigueur.

En outre, les déchets sont éliminés dans des conditions propres à limiter les effets négatifs sur le sol, la flore, la faune, l’air et les eaux et, d’une façon générale, sans porter atteinte ni à l’environnement ni à la santé de l’homme.

Article 28. Des équipements de protection individuelle pour deux personnes sont prévus pour les fonctionnaires chargés de la surveillance en vue du contrôle à l’intérieur des zones de travail.

Article 29. Le récépissé remis par le transporteur ou le collecteur agréé en vertu de la loi en vigueur, à l’entrepreneur lors de l’enlèvement des déchets indique au moins la date de la remise, la nature, la quantité, les propriétés et la composition des déchets, le nom et l’adresse de l’entrepreneur et du transporteur ou collecteur agréé ainsi que le lieu de destination des déchets, les modalités de leur transport et leur mode d’élimination.

L’entrepreneur ayant réalisé les travaux de désamiantage conserve les copies des récépissés pendant une période de cinq ans.
Article 30. Le Ministre chargé de l’Environnement est responsable de l’exécution du présent décret.

CHAPITRE III : Gestion et la remise en état de sites contaminés par l’amiante

Article 31. Les présentes dispositions réglementaires servent d’outil de travail aux personnes concernées par la planification de travaux de gestion et de remise en état des sites contaminés par l’amiante. Il s’agit de clarifier la problématique du point de vue de la protection de l’environnement, de préciser la procédure légale, et les procédés de décontamination, mais aussi de fixer les critères de protection de l’environnement les plus usuels.

Article 32. Les sols constituent l’un des trois éléments naturels essentiels à la vie. Ils apportent un soutien physique à un grand nombre d’activités humaines, constituent une richesse considérable du point de vue de leur capacité de stocker, de tamponner et de filtrer l’eau et d’autres substances et ont un rôle essentiel dans la production de biomasse, d’aliments et de matières premières. Pour que les sols puissent continuer à remplir leurs fonctions essentielles, il est nécessaire de prendre des mesures en matière d’utilisation durable et de protection des sols afin qu’ils soient considérés au même titre que l’eau et l’air, comme une ressource naturelle à protéger.

Article 33. La procédure d’assainissement d’un terrain comporte trois étapes.

La première consiste à faire dresser une étude d’impact sur l’envergure d’une éventuelle pollution.

La deuxième constitue la réalisation des travaux d’assainissement en soi, qui comprend :
- L’élaboration d’une étude de dépollution
- L’élaboration d’un programme de reconnaissance de l’amiante et d’analyses
- L’organigramme des travaux de décontamination proprement dite
- Le rapport final

et la troisième étape, qui se prépare en même temps que la deuxième, est la certification du résultat de la dépollution.

Article 34. La première étape, celle de la confection de l’étude d’impact, étant réalisée par un spécialiste; ce spécialiste peut, le cas échéant, concevoir et réaliser les travaux de dépollution. La vérification et la certification finale concernant l’état de pollution résiduelle du terrain après assainissement doit être effectuée par un spécialiste est différent de celui qui a effectué l’étude de dépollution ou d’impact sur l’environnement précédant les travaux de dépollution.

Article 35. L’étude d’impact sur l’environnement permet de se faire une idée assez précise sur l’envergure environnementale de la pollution à traiter et de préparer au mieux les travaux de décontamination. Cette étude doit répondre à un certain nombre de critères. Ces critères s’articulent autour de plusieurs axes, celui de renseigner sur l’identité des organismes chargés de l’étude et du sujet précis de l’étude; celui de la description du site en question; celui des travaux d’échantillonnage et des résultats des investigations, celui des travaux de décontamination à réaliser, celui des impacts sur l’environnement et des mesures envisagées pour les réduire ou les éliminer, celui du Plan de Gestion Environnemental et du Plan de Suivi ultérieur.

Les différents sujets à traiter dans une étude d’impact sont indiqués dans les termes de références arrêtés par le Ministère chargé de l’Environnement. En complément à ces sujets, on peut mentionner certains critères appliqués dans le cadre d’une telle étude.

Dans le cas où l’utilisation future d’un terrain n’est pas connue, il faut prévoir que ces terrains soient utilisés à des fins de construction d’immeubles d’habitation, d’écoles, d’usines, ... Il est donc impératif de considérer ces sites comme étant particulièrement sensibles. Un assainissement en conséquence doit être réalisé. Les mêmes valeurs doivent être observées lorsque la formation géologique est telle qu’une migration latérale de polluants peut avoir un effet préjudiciable sur le terrain voisin.

Le Ministre chargé de l’Environnement fixe les valeurs de pollution résiduelle qui doivent être atteintes par le procédé de décontamination. Ces valeurs sont fixées notamment en fonction des critères tels que la sensibilité de la pollution pour l’environnement (situation géologique; migrations latérales ou verticales de la pollution) et l’utilisation future du site (p.ex. terrain réservé à des industries, à des habitations ou bien utilisation future non encore définie).
Article 36. L’étude d’un site pollué par l’amiante est un préalable à toutes les décisions qui concernent son affectation ultérieure. Elle conditionne notamment le choix des objectifs de dépollution, le plan d’action à engager et les moyens techniques et financiers à mettre en œuvre pour assainir le site. C’est pourquoi la reconnaissance et l’étude du site doit s’effectuer par des personnes spécialistes dans ce domaine et selon une méthodologie cohérente et raisonnée.

Article 37. Le rapport final : un rapport final concernant l’état de pollution résiduelle par l’amiante d’un terrain assaini doit être fourni par une personne agréée à l’Administration de l’Environnement. Afin de maintenir l’indépendance nécessaire de la personne agréée, notamment par rapport à la conception de la méthode d’assainissement, la personne agréée devant certifier l’assainissement du terrain, doit être différente de celle ayant effectué l’étude initiale de la quantification éventuelle d’une pollution.

Il est indispensable que le rapport certifiant l’assainissement d’un site soit fourni avant que les travaux de reconstruction n’aient commencé afin qu’un contrôle supplémentaire des terres restant sur place puisse éventuellement avoir lieu.

Article 38. la politique environnementale concernant les sites pollués par l’amiante et leur assainissement s’appuie sur les textes législatifs en vigueur et fait notamment référence aux législations relatives aux établissements classés ; à la protection de la nature et à la préservation de la santé comme :
- les lois et règlements relatifs aux établissements classés,
- les lois et règlements relatifs à la prévention et à la gestion des déchets,
- les lois et règlements relatifs à la pollution, protection et gestion des eaux, des sols et des milieux naturels,
- les décisions relatives à l’agrément de personnes physiques ou morales privées ou publiques, autres que l’état pour l’accomplissement de tâches techniques d’étude et de vérification dans le domaine de l’environnement.

Outre les obligations légales des industries en matière d’environnement et de sécurité, ces lois et règlements définissent les compétences des différents Ministères et le rôle des services de l’Administration de l’Environnement.

L’étude de dépollution (assainissement, décontamination) doit être présentée en trois exemplaires à l’Agence Nationale de Protection de l’Environnement en vue d’approbation.

L’enlèvement de tous déchets contenant de l’amiante ou des terres et fluides contaminés doit se faire par une entreprise agréée en vertu de la législation en vigueur.

Article 41. Le programme analytique de l’étude : après approbation de l’étude de dépollution et préalablement à l’exécution des travaux sur le site, le programme analytique de l’étude comprenant la description de la méthodologie employée, les moyens à mettre en œuvre, le type de pollution recherchée, les techniques de dépollution, le niveau d’assainissement et le planning d’exécution doit être soumis pour accord de l’Administration de l’Environnement qui se réserve deux semaines pour l’approuver.

Dans tous les cas l’approbation par l’Administration de l’Environnement du programme analytique de l’étude fait office d’autorisation pour la réalisation des travaux de décontamination.

Article 42. Rapport final : A l’issue des travaux sur site et sur base des résultats d’analyses, le rapport d’étude est établi par la personne agréée. Parmi les éléments qui constituent le rapport (méthodologie appliquée, rapport des travaux, résultats, interprétation), les renseignements suivants doivent obligatoirement y figurer :
- coordonnées du ou des organismes qui interviennent sur le site dans le cadre de l’étude ;
- objet des travaux et affectation des tâches selon les intervenants ;
- extrait de la carte topographique pour une localisation précise du site ;
- plan de situation du site ;
- résultats de l’enquête documentaire et historique du site ;
- description détaillée du site avec nombre et emplacement des bâtiments, hangars, zones de stockage, ouvrages enterrés, etc ...
- aperçu de l'activité présente sur le site et usage futur en cas de modification de l'affectation du site ;
- contexte environnemental et humain dans lequel s'inscrit le site ;
- coupe géologique synthétique du site avec la description des différentes couches de terrain et le niveau de la nappe d'eau souterraine ;
- classement du site avec argumentation du choix du classement ;
- estimation des volumes de terres polluées ;
- plan de situation des zones polluées sur le site (contour, profondeur) ;
- impact constaté et type de polluants rencontrés.

Le rapport d’étude doit être remis à l’Administration de l’Environnement en trois exemplaires.

Article 43. Classement du site : ce classement est primordial pour interpréter les résultats d'analyses et pour fixer les objectifs de dépollution à atteindre au terme du traitement. On distingue trois niveaux de classement selon l’utilisation actuelle ou future du site :

Niveau 1 : assainissement des sols et des sous-sols de façon à rétablir la qualité quasi-naturelle du site pou des usages de résidences, d’aire de loisirs, accueillant des personnes.

Niveau 2 : assainissement des sols et des sous-sols de façon à rétablir la qualité du site pour un usage sensible, tel que l’installation d’immeubles résidentiels et de bureaux ;

Niveau 3 : assainissement des sols et des sous-sols de façon à rétablir la qualité du site pour un usage non sensible, tel qu’une occupation par du commerce et par l’industrie.

Article 44. Opérations d’assainissement. Sur base des résultats de l’étude de pollution des sols, du sous-sol et des eaux souterraines, le site devra être traité avec pour objectif d’atteindre le niveau d’assainissement correspondant au niveau de classement du site (1, 2 ou 3). L’assainissement portera sur certaines zones précises du site identifiées lors de l’étude ou bien sur la totalité de sa surface.

Article 45. Certification d’assainissement. Au terme de l’opération de dépollution et dès lors que les objectifs d’assainissement sont atteints, une personne agréée doit procéder à la certification d’assainissement du site.

le maître d’ouvrage ou plus généralement le maître d’œuvre contacte l’organisme qui interviendra sur le site pour certifier que l’opération de dépollution a permis de rétablir les concentrations en substances polluantes aux valeurs fixées par arrêté ministériel conformément au niveau de classement du site.

Le spécialiste agréé en charge de certification n’est pas autorisé à intervenir s’il a déjà travaillé sur le site notamment dans le cadre d’étude, de conseil et/ou d’ingénierie. De plus, aucune dépendance technique, financière ou commerciale ne doit lier la personne agréée au maître d’ouvrage/maître d’œuvre.

Article 46 : Rapport final de certification

Au plus tard trois mois après l’intervention du spécialiste agréé sur le site, le rapport final certifiant le niveau de pollution résiduelle suite à l’opération d’assainissement du site est adressé à l’Administration de l’Environnement.

Le rapport doit contenir les éléments essentiels suivants :
- un plan d’échantillonnage et localisation des prises d’échantillons sur le site ;
- le type de prélèvement et nature des analyses ;
- le tableau des résultats d’analyses ;
- un certificat d'assainissement indiquant explicitement que les concentrations résiduelles en substances polluantes permettent l'utilisation du site selon son usage actuel ou futur et que le site ne présente plus de danger pour l'environnement et la santé humaine.

Il est indispensable que le rapport certifiant l'assainissement d'un site soit fourni avant que les travaux de reconstruction n'aient commencé, afin qu'un contrôle supplémentaire des terres et des lieux restant sur place puisse éventuellement avoir lieu.

Article 47. L'assainissement d'un site pollué par l'amiantes peut s'effectuer selon différentes techniques. Les traitements peuvent être différenciés :
- Soit par la localisation géographique du traitement : traitement in situ ou ex situ,
- Soit par la nature même de traitements employés : physique, lavage par l'eau, badigeonnage, etc.

Les traitements ex-situ regroupent les traitements dans lesquels la matrice polluée est enlevée du site et transférée vers un centre de traitement fixe. Les opérations d'extraction et de transfert de la matière polluée peuvent toutefois générer des migrations de pollution dans l'air, l'eau ou le sol.

Les traitements in situ s'effectuent dans l'espace pollué par l'amiantes (lavage, encapsulation, badigeonnage, stabilisation par un liant, isolation, etc.). Ces traitements nécessitent la connaissance du site pollué, afin qu'ils soient adaptés aux objectifs d'enrayer tous risques environnementaux et sur la santé.

Article 48. L'extraction des terres polluées par l'amiantes est une méthode simple, rapide et définitive. Les terres retirées du site doivent être expédiées vers un lieu de décharge de produits dangereux.

Article 49. **Modalités d’application.** La durée des travaux couverts par autorisation ministérielle concernant les travaux de dépollution, est limitée à une durée précise à compter de la date de notification de l'autorisation. L'autorisation peut être renouvelée pour une durée supplémentaire sur base d'une demande qui doit être introduite avant la date d'expiration de l'autorisation existante.

Les travaux doivent être exécutés conformément à la demande d'autorisation, sauf en ce que l'autorisation aurait de contraire à cette demande. Ainsi le dossier de demande fait partie intégrante de l'autorisation ministérielle.

Lors d'un contrôle d'inspection, une copie de l'autorisation ainsi que les résultats des contrôles imposés en relation avec la protection de l'environnement doivent être mis à la disposition des autorités de contrôle compétentes.

La visite de l'établissement par les agents de l'autorité compétente doit être concédée en tout temps.

Les droits des tiers sont et demeurent réservés.

Article 50. **Conditions relatives au déroulement des travaux:**

Au plus tard deux semaines après le début des travaux d'assainissement, le maître d'ouvrage doit communiquer par écrit à l'Administration de l'Environnement, les coordonnées de la (des) société(s) de transport chargée(s) de l'élimination des déchets ainsi que leurs lieux d'élimination.

Les travaux d'assainissement doivent être effectués par une (des) entreprise(s) spécialisée(s) en la matière.

Les travaux d'assainissement ainsi que l'évacuation des déchets en résultant doivent être surveillés par un organisme agréé par le Ministre de l'Environnement.

Les travaux d'assainissement comprennent entre autres :
- la mise en place des équipements requis lors des travaux;
- la décontamination des éléments pollués;
- le tri, l'évacuation et l'élimination des déchets résultant des travaux d'assainissement;
- le remblayage des terrains;

L'assainissement du sol et du sous-sol doit se faire de façon à ce que la pollution résiduelle ne dépasse pas la valeur recommandée.
Le maître d'ouvrage ne peut entamer ou faire entamer aucuns travaux et aucune exploitation nouvelle du site qu'après l'approbation définitive par l'Administration de l'Environnement du rapport final certifiant le niveau d'assainissement du site.

Article 51. Protection de l'air

L'évacuation de déchets et de poussières d'amiante doit se faire de la sorte à ne pas incommoder les voisins, ni constituer un risque pour leur santé.

Afin de réduire au maximum la formation et l'envol de poussières lors des travaux, des mesures appropriées telles que la pulvérisation d'eau sont à prendre, le cas échéant.

Les voies de circulation, les aires de manœuvre et de stockage doivent être consolidés (stabilisés) à l'aide d'un matériau approprié. Ils doivent être entretenu de manière à limiter la formation et l'envol de poussières au maximum. Le cas échéant, les voies de circulation et les aires de manœuvre doivent être humidifiées de manière appropriée.

Les stockages au sol de matières pulvérentes doivent, le cas échéant, être stabilisés de manière à éviter au maximum les envols de poussières. A cette fin des mesures tel que l'humidification du stockage sont à mettre en œuvre, le cas échéant.

Article 52. Protection des eaux. Il est interdit de déverser dans le milieu ambiant ou dans la canalisation publique des eaux et/ou des substances contenant de l'amiante pouvant provoquer, dans le cours d'eau récepteur, une pollution ayant des conséquences de nature à mettre en danger la santé humaine, à nuire aux ressources vivantes et au système écologique aquatique, à porter atteinte aux agréments ou à gêner d'autres utilisations légitimes des eaux ainsi que compromettre leur conservation et leur écoullement.

Article 53. Prévention et gestion des déchets. Le maître d'ouvrage doit veiller à ce que la valorisation ou l'élimination des déchets qu'il produit soit conforme à tous niveaux à la législation applicable en la matière. Cette responsabilité joue même lorsqu'il a recours à un tiers pour s'assurer de cette tâche.

Article 54. Les déchets inertes provenant des travaux d'assainissement doivent être considérés comme des déchets dangereux puisqu'ils exposés en cours d'assainissement et peuvent être pollués par l'amiante. Leur stockage doit se faire dans les conditions utiles d'éviter leur éparpillement et donc leur risque pour la santé. Aucun laxisme dans la préservation de ces déchets n'est toléré.

Article 55. Le maître d'ouvrage doit désigner une personne de contact chargée des questions d'environnement qui doit à tout moment pouvoir fournir les renseignements demandés par les autorités compétentes. Les noms de personnes de contact et du remplaçant, le cas échéant, doivent être communiqués à l’Administration de l’Environnement au plus tard le jour de début des travaux.

Article 56

نص تنظيمي لمنع الصغر الحراري بتونسي

الوزير الأول

باقتراح من الوزير المكلف بالبيئة

بالإطلاع على

- القانون عدد 37-97 المؤرخ في 2 جوان 1997 المتعلق بالنقل المواد الخطرة عبر الطرق.

COMETE Engineering/PLINIOS SA 146
الفقرة 1: على أساس هذا الأمر، نقرر

الصحرى الحريري: الأشكال الليبية المعاد الناتجة من الصحرى الحالية يمكن تطهيرها على عين المكان إلا بمكثبة كهربائية أو بالأنهار.

الصحرى الحريري يمكن إزالة أليافه بسهولة وقائمة براشية للتطبيقات المضمنة في المحقق الأول لهذا الفقر.

الصحرى الحريري غير المقصود: حيث تكون الألياف متصلة بقوة إلى مثبت وقائمة براشية للتطبيقات المضمنة في المحقق الأول لهذا الأمر.

الصحرى الحريري: تحديد الصحرى الحريري بتفتيت المساحة بالإشعاع أو العزل الكلي.

الصحرى الحريري: تغليف الصحرى الحريري بتفتيت المساحة بالإشعاع أو العزل الكلي.

الصحرى الحريري: تغليف المساحة: طريقة تتضمن تشغيل طبيعة ببالمساحة مباشرة على الصحرى الحريري.

الصحرى الحريري: إشعاع: طريقة تتضمن استخدام رايت خفيف يسبّب ببعض في التغليف الشعري ويستحسن أن يصل إلى غابة العامية إما مباشرة أو ب슷ولات مكونة.

الصحرى الحريري: عملية تستخدم في إعداد إنشاء طبقة دون مسؤولة التغليف (التشتيت) أو بطرح الأدبيات على أباع العامية الداخلية عن طريق تنبيذتها بالبراغي عبر التغليف.

الصحرى الحريري: ضعف عملي عقلة بريسة comando على اختيار الدخاخ وضعف الضغط فيها من خلال طاردات هواء مزودة بمجازات قوية.

ويكون سي تو تقع من أوراق بلاستيكية مزودة ومنفذ إليها ينتم عبر SAS.
الفصل 2:

1. ينوه حماية الموانئ والعمال، ويعتبر استخدام وضع وقائي ويعتبر العزل والعصر في السوق الوطنية والانحلال،

2. ينوه حماية البركة، يتعين وضع وقائي ويعتبر العزل والعصر في السوق الوطنية والانحلال، والإدراكات والياجيرة، ويعتبر مادة النقلة المقدمة، يعنى مادة أخرى.

المادة 4:

التفصيل الأول: التعرض للحرير الصخري في المباني المشتراة

المادة 2:

1. ي يتعلق هذا الفصل على كل المباني المشتراة، التي يتم بها قبل نهاية سنة 2014، التي على ملك شخصيات خاصة أو

المادة 6:

1. يجب على المالك المباني المذكور في المادة الأولى لتحظى على وجود تشفير للعماء، وواقيات، وتغييرات نقل الحرارة، ورس وتحلي من قبل مسؤول يتم تنفيذ الأحكام المحددة في الفقرة الثانية من المادة 5.

المادة 7:

1. يجب على الطرق التقيتي المعتمد أو تقيي البناء المعتمد المذكورين بالفصل الأول استثناء الإشارات المحددة بالمادة 16.
الفصل 9: يتم إجراء قياس مستوى الغبار وتحليل المواد والمتجهات المذكورة في الملاحظات المجمعة، بما في ذلك المركبات، النسيج، والمواد والصحة العامة والمطابقة.

إذا كان مستوى الغبار أقل من 0,010 ألفي / سم3، يقوم المخلوق بالمجال وزيادة هذا المستوى عن طريق تدفق الغاز أو إضافة منتجات حماية مربحة.

إذا كان مستوى الغبار أكثر من 0,010 ألفي / سم3، يتم تحديد منتجات حماية وزيادة هذه المستوى عن طريق تدفق الغاز.

في الفترة التي تسبق الأسباب، يجب أن تكون الإجراءات الحماية ذات مفعول في أولىARIO لمدة 36 قرية بينها 36 قرية، ويجب أن تكون الإجراءات الحماية ذات مفعول في أولىARIO لمدة 36 قرية بينها 36 قرية.

المادة 10: في حالة وجود أسباب تؤدي إلى زيادة المواد والمتجهات المذكورة، يجب أن تكون الإجراءات الحماية ذات مفعول في أوليARIO ضمان عدد من النقول وتحسينات معينة.

المادة 11: في نهاية كل الفترة، يجب أن تكون الإجراءات الحماية ذات مفعول في أوليARIO ضمان عدد من النقول وتحسينات معينة.

المادة 12: يتم تحديد منتجات حماية وزيادة هذا المستوى عن طريق تدفق الغاز.

المادة 13: في حالة وجود أسباب تؤدي إلى زيادة المواد والمتجهات المذكورة، يتم تحديد منتجات حماية وزيادة هذا المستوى عن طريق تدفق الغاز.

المادة 14: يتم إنشاء الملف التقني "الصحراء الحمراء" المذكور بالمادة 13 قبل المواعيد النظامية التالية:

- 31 ديسمبر 2017 بالنسبة إلى مباني المخصصة للسكن
- 31 ديسمبر 2018 بالنسبة إلى مباني المخصصة للمكاتب، المؤسسات التعليمية، والمباني المخصصة لنشاط صناعي أو فلالي.

ومنحت زيادة الأخطار المفيدة للمشتركين من مباني السكن الاجتماعي.

المادة 15: الملف التقني "الصحراء الحمراء" المذكور بالمادة 13 كما يلي:

1. التحديد التقني للمجال والمتجهات التي تحتوي على الصحراء الحمراء، و أيضا الإشراف إليها!
2. تسجيل حالة هذه المواد والمتجهات;
3. تسجيل أعمال الإزالة أو إخراج هذه المواد والمتجهات والتعامل الوقائي، مع معلمة المراقب، و تقوم بهذه المواقف، خاصة إجراءات التدخل، بما في ذلك إجراءات التصريف والتعاليم من النقلات،
4. ورقة مخصصة.

وإلى إنشاء الملف التقني "الصحراء الحمراء" على أساس إعداد يتناول المواد والمتجهات المذكورة في القائمة المذكورة بالحالة المتفاوتة هذا القرار، و التي يمكن الولوج إليها دون أي تغيير، وتحقيق ذلك، على أسهم العمل، مع مراعاة التقني معتمد أو تقني بان يكون معتمداً من شركة مهنية مختصة في هذا النوع من الإسعاف، وتشمل مع الالتزامات المنسوب عليها في المادة 16. وتشمل:

- تحليل المواد والمتجهات، و الموضوع المنسوب عليه في القائمة الثانية من المادة 9.

في حالة الإشراف إلى مادة أو متجه ملتوى يمكن على الصحراء الحمراء، يجب أن يتم الإعداد التقني المعتمد، أو في البناء أن يذكر ذلك في حالة التدابير العامة المشار إليها.
Synthèse de l’étude sur les usages de l’amianté et la gestion des déchets amiante en Tunisie

DGEQV-2014

La matière 16

1. Un échantillon mnon bon marché est disponible et il est adapté à la production des travaux de construction en général.

2. L'utilisation de l'amianté pour la production de matériaux de construction est limitée.

3. Les règles de sécurité et de santé doivent être respectées lors de l'utilisation de l'amianté.

La matière 17

Le texte contient des informations sur les usages de l'amianté en Tunisie, notamment sur sa production, sa distribution et sa consommation. Il détaille également les mesures de sécurité et de santé à prendre lors de son utilisation.

La matière 18

Le texte contient des informations sur les usages de l'amianté en Tunisie, notamment sur sa production, sa distribution et sa consommation. Il détaille également les mesures de sécurité et de santé à prendre lors de son utilisation.

La matière 19

Le texte contient des informations sur les usages de l'amianté en Tunisie, notamment sur sa production, sa distribution et sa consommation. Il détaille également les mesures de sécurité et de santé à prendre lors de son utilisation.

La matière 20

Le texte contient des informations sur les usages de l'amianté en Tunisie, notamment sur sa production, sa distribution et sa consommation. Il détaille également les mesures de sécurité et de santé à prendre lors de son utilisation.

La matière 21

Le texte contient des informations sur les usages de l'amianté en Tunisie, notamment sur sa production, sa distribution et sa consommation. Il détaille également les mesures de sécurité et de santé à prendre lors de son utilisation.

La matière 22

Le texte contient des informations sur les usages de l'amianté en Tunisie, notamment sur sa production, sa distribution et sa consommation. Il détaille également les mesures de sécurité et de santé à prendre lors de son utilisation.

COMETE Engineering/PLINIOS SA

150
المادة 23: يتم نقل النفايات من موقع الحظيرة إلى الحاويات أو إلى مكان التخزين خارج ساعات الاكتظاظ لتمسكاتي المباني إذا كان هناك منازعات تتعلق بمسار المتساكين من غير العامين في الحظيرة.

المادة 24: بالنسبة إلى تلك النفايات فإنه يتم وضع نفايات الصخر الحراري المماثلة إليها في حاويات شن بملعقة أهل، أو في مكان معلق بقبل. على أن توضع على الحاويات علامات تسمح بتحديد طبيعة، وتركيبة وكيفية النفايات المنحوتة كما يتم ذكر عبارات "خطر حيوي صرصور" على بجانب التخزين.

تحافظ الحاويات الموضوعة في الطريق بسراج من المواد الصلبة يعتمد على استلامها إليها، باستثناء تلك التي أعدت للتنبيهات الفورية. وإذا لم يكن تلك الأدوات الموجودة في تلك الحاويات معلقة، لأنها بصد الطبيعة، يجب علق هذه الحاويات في كل توقف عن العمل، في ذلك فترات الاستراحة.

المادة 25: تمكّل العمل الجوي شرباً من الشروط الإضافية.

المادة 26: يتم المستلزم أو من متطلّبه تقريرا، يومياً، خلال نقل النفايات المنتجة طبقاً للجدول المذكور في الملحق 2 من هذا المرسوم.

المادة 27: يتم عمل أعمال متعمّقة والمعالجة، وفق أو التخلص من النفايات طبقاً للشروط ذات النافذة المقابل.

بالإضافة إلى ذلك، يتم التخلص من النفايات في ظروف ملائمة للحالة، والمطابقة للبنية النباتية، والثورا الحيوانية، والثبات والنظام، وبخشة عامة، دون السماح بالصحتين ولا بصحتين الإنسان.

المادة 28: يتم توفير نادات حماية شخصية خاصة بالقادة المسؤولين عن الأرشيف والمريحة داخل مواقع العمل.

المادة 29: يجب أن يشير النقل للنقل ب쌈 أو الجامع المعتمد معه القانون ذا الملف إلى القائمة عند رفع النفايات على الأقاليم التاريخ والفوري، ومتعلقة بكلاً، وكليا، وتوزيع النفايات، وامم معه المقابلة، والثبات أو التلف أو التuds، أو وظائف أو الخث أو الأحداث أو الجامع المعتمد في بالإضافة إلى وجهة.

المادة 30: الوزير المكلف بالبيئة هو المسؤول عن تطبيق هذا المرسوم.

المادة 31: إذا كانت منظمة النفايات الحالية هي أدوات العمل بالنسبة إلى الأفراد المعينين بضبط أعمال التصرف وإعادة تأهيل المواقع.

المادة 32: تعتبر التربة واحدة من الأعراض الطبيعية الثلاثة الضروريّة للحالة، وهي تعرف أن تمايل الحالة على نظرية تكاملها، وتطرف وتخصيصات المياه ومياه أخرى و لها دور أساسي في حماية الكتل الحيوية، وعامة الماء، وفي أيّة الاسترداد أو النشاط الأساسي، في الضروريات الحالية تكامل الخاصة بمياه الاسترداد والحمية التي تجب.

المادة 33: عملية تطبيق قاعدة أرض تضمن ثلاث محلاً.

التمثيل الأولي في إعداد دراسة أرض حول نطاق تلوث محلي.

المادة 34: التمثيل الثاني في إعداد الأعمال ذاتها، وتشمل:

- إعداد دراسة حول تلوث الصخر الحراري وتحاليل
- تركيب والنظام للأعمال الخاصة في ذلك المواقع
- التقرير النهائي

أما المرحلة الثالثة، وتم إعدادها في نفس وقت المرحلة الثانية، فتمثل في التحقيق على نتائج عملية إزالة التلوث.

المادة 35: المرحلة الأولى، وهى مرحلة إعداد دراسة الأثر المنجز من قبل الخبر، ويمكن لهذا الخبر، أن تكون مناسيا، تصميم أعمال إزالة التلوث وتدنيفها المعاينة والتحقيق النهائي بما في التلوث الناتج في مساحة الأرض بعد تطبيقها يجب أن تكون بإمر خبر آخر الذي أنجز إزالة أرضية في المواقع قبل أعمال إزالة التلوث.

المادة 36: دراسة الأثر في المحيط تتم بأخذ فكرة حديدية عن نطاق تلوث المحيط الذي يجب معالجته وإعداد أفعال أعمال إزالة التلوث. يجب أن تتشابه هذه الدراسات على معدل من المقاييس، وتتعاقب هذه المفاصل بطريقة من المقاولات، منها التعرف إلى المواقع، ومعالجة، ثم، وتعريف موضوع الدروس، وهي الأدلة، وفيها علاجات أخرى، ونتائج البحوث، ومعنا تفتيح أعمال إزالة التلوث، ومنها أثر على المحيط، والإجراءات الضرورية للحد منها أو إزالتها، ومنها خطة التصرف في المحيط.
لقد حددت من الأمور الصادرة عن الوزير المكلّف بالبيئة مختلف المجالات التي يجب معالجتها في دراسة الأثر. وعامة إلى هذه المجالات، يمكن أن تكون بعض المقاولات المعمقة في إطار مثل هذه الدراسة.

في حالة استخدام طرق غير معروفة في المستوى، يجب توقع أن هذه الأراضي قد تستخدم في بعض النواحي المختلفة، والممارسات، والمصادر. إن الضروري إجراء دراسة داخلية جيدة بشكل خاص، وعلي ذلك يجب أن تجري عملية التثبيت.

ويجب أن تراعى نصيحة البيئة والبيئة، مثل المشرقي النووي للتنقلية كمساحة أو تطبيق،可以让 أن يكون له أثر ضروري على قطعة الأرض المحاذرة.

لقد ضبطت الوزير المكلّف بالبيئة النسق المتوقفة التي يجب أن تصل إليها عملية التثبيت هذه النسق المفصلة خاصة وفق مقاولات مثل درجة حساسية المحيط للثبوت، موقع الجينولوجي، حركة الثبوت الجيولوجي أو العمودي، والاستخدام المستقبلي للموقع (مثل تأثير محتوى بالمحمولة للنظام المستقل، لكن بعد).

المادة 36: الرسالة الخاصة بموقعث بسمة الحريري مقتضى على كل القرارات الخاصة بالمناخ المتوقفة بالأحقية، وتحدد على وجه الخصوص اختيار الأهداف من عملية إزالة الثبوت، وكيفية العمل المتلفة والمستقلة الثقافية والمالية التي يجب توفيرها للطرق المتناسبة. SHOULD)

ويجب أن تستند إلى النسب المحددة في هذا العقد، وفقاً للموجهة، وفقاً للوائح، وفقاً للنسخ المحرر للمساهمات المصنفة، وبحماية الطبيعة، وبحماية مجتمعات حيوية، وفقاً للمواصفات المعقلية، وفقاً للوائح المعلقة المخصصة.

المادة 37: التوعية النهائية: يجب أن نحن التقرير النهائي المتعلق بنفس الثبوت المتوقفة من الصخر الحجري في طاقة أرض من قلب شيخ معتمد من إدارة المحيط للمنطقة، الذي يشترطه في الخصوص، خصوصاً بالنسبة إلى تصور متوقفة تطبيقي، ويجيب أن يكون الشخص المعتمد في التثبيت على تطبيق الأرض، وفقًا للشخص الذي كلفه بمهمة الإطار الأولي للنسق المتوقفة المحاذرة.

ومن الضروري أن نتبع التقارير المعدة على تطبيق موقع مما أن نبدأ أعمال إعداد البناء من أجل أن تتغير أخيراً عملية

مراعاة الإضافيات الإضافية المتوقفة في الموقع.

المادة 38: إن السياسة المتبعة في التعمول مع الموقع المتوقفة بالمواقع الموئلة بسمة الحريري وتطبيته في نحو نصوص

قانونية ذات المفعول وهي تملك من وجه الخصوص مرجعًا للمساهمات المتوقفة، وبحماية الطبيعة، وحماية مجتمعات حيوية، وفقاً للمواصفات المعقلية، وفقاً للوائح المعلقة المخصصة.

المادة 39: النقاكات والتحاليل المختلفة المخصصة

المادة 40: القوانين واللوائح المتعلقة بالمواقع الموئلة

المادة 41: حالة تفصيلية للدراسة

المادة 42: التقرير النهائي: في نهاية الأفعال في الموقع واستنادًا إلى نتائج التحليل، ينجع شخص معتمد تقريرًا، ومن بين العناصر، التي يشمل عليها التقرير (الموضوعية المعتدة، تقرير عن الأعمال، التحليل، توضيح) يجب أن تتراوح إلى المعلومات التالية:

المادة:
- الملاحظات الخاصة بالمؤسسة أو المؤسسات المتصلة في الموقع المذكورة في الدراسة
- ملاحظات الأعمال وأنсад المهام بحسب المدخلين
- نسبة من الخرائطة المبسطة لتحديد نطاق الموقع
- تخطيط مكان الموقع
- نتائج السحب التوفيقية والتاريخي للموقع
- تصميم الأنفاق المفقودة
- تصميم النظرة العامة على النشاط الحالي في الموقع واستخدام المستقبلي في حال تحويل مهنته
- إدراج الموقع في مساحة البيئية والبشرية
- التصنيف البيولوجي للمنطقة مع توصيف لمختلف طبقات الأرض ونسبة المباني المحيطة
- تصنيف الموقع مع توضيح لاختيار التصنيف
- تدريج نسبة الأرض الملوثة
- تخطيط حالة الأمكان الملوثة في الموقع (النطاق، العمق)
- الأثر المتبقي ونوع الملوثات المكتشفة

يجب أن يتم التقرير إلى إدارة الموقع في ثلاثة نظائر.

المادة 43: تصنيف الموقع - هذه التصنيف من الألوان توضيح نتائج التحاليل لضيق الأهداف المرسومة من عملية إعادة التلوث في إطار العالمة. يمكن تثبيت نتائج هذه التبيانات في جدول مسبق في الموقع:

المستوى 1: تطهير الأرض وما تحت الأرض بشكل يضمن النظرة على الموقع وضعه طبيعي لاستخدامه في السكن، كمنطقة ترفيهية ويكمل إلى لا تسبب أنواع الأرض

المستوى 2: تطهير الأرض وما تحت الأرض بشكل يضمن النظرة على الموقع لاستخدامه العادي، مثل إقامة عمارات سكنية وإدارية

المستوى 3: تطهير الأرض وما تحت الأرض بشكل يضمن النظرة على الموقع للاستخدام غير العادي، مثل استطلاعات في التجارة والصناعات

المادة 44: عمليات التطهير - بالاستناد إلى نتائج دراسة تلوث الأرض، وما تحت الأرض، والحركة المحيطة، يجب معالجة الموقع بهدف الوصول إلى مستوى تطهير طبيعي مع مستوى التصنيف (1، 2 و3). يتم التركيز في التطهير على أن يكون معايي في الموقع وفقًا:

- تحديدها أثناء الدراة أو على أساس معايير الإحلالية.

المادة 45: بعد عملية إعادة التلوث، وبدلاً من أن يتم تحقيق أهداف التطهير، يتكفل شخص معتمد بالتصديق على قرار تطهير الموقع.

يصل المقاول أو رسمة عمارة معدل المشروع بوكلة تتطلب في الموقع لتشهد أن عملية التطهير مكتملة من إصلاح المواد الملوثة المركزة حسب القيم التي حددتها القرار الوزاري وفقًا لمستوى التصنيف المحدد.

لا يوجد الأصدقاء المعتمد في الصدارة تتطلب إذا كان عمل يفعل في الموقع، وفقًا في إطار الدراسة، وتقدم المشورة و/أو النسخة، وبدلاً من ذلك، لا ينبغي أن يكون الشخص المعتمد تابعًا للمقاول / مدير المشروع تلقائيًا أو ماليًا أو تجاريًا.

المادة 46: التقرير النهائي للمصادقة

يتم إرسال التقرير النهائي للمصادقة والتوقيع بعد عملية تطهير الموقع إلى إدارة البيئة وذلك في عضوين ثلاثة

خططة أخذ العينات وتحديد مكان أخذ العينات في الموقع;
- نوع العينة وطبيعة التحاليل;
- جدول نتائج الاختبارات.

- شهادة التقرر التي تفيد بوجود نسبة ساقفة التلوث المسبقة في المواد الملوثة تسمح باستخدام الموقع حسب ما يستنتج له حاليًا أو مستقبلاً. Ibn الأصل المطلق لم يعد يحدد خطرًا على البيئة أو على صفة الإنسان.

ومن الضروري أن يتم التقرر الذي يشهد بتطبيق المقرر قبل بدء أعمال إعادة البيئة، من أجل أن يكون أخيراً مراجعة إضافية للأراضي وعلى المواقع المحيطة بالمكان.

المادة 47. يمكن أن يتم تطهير المواقع الملوثة بإن серии المحترفي باستخدام تقنيات مختلفة. ويمكن التطرق بين هذه المواقع

- إذا تم تطهير المواقع الجغرافي للمصادقة: العلاج في الموقع أو خارج الموقع;
- أو تطهير طبيعة المعالجات المستخدمة نفسها: مائية، وغسال، بالماء، وطلاؤها بالكلس، الخ.
وتتمثل المعالجات خارج الموقع المعالجات التي يتم من خلالها إزالة القابل والملوث من الموقع وتهيئة من مركز معالجة ثابت. ويمكن أن ينجم عن عمليات إزالة ونقل المواد المعالجة، أبعاد النمون في الهواء أو تسربها في الماء أو التربة.

وتم المعالجات في الموقع، تحديدًا في المنطقة الملوحة بصرف الح서비스 (النفيك، التنفس، وبالبلد والتماكن بتعامل اللأس، والعمر،) ويطلب تحليل المعالجة معرفة بالموقع الملوث، من أجل أن يتم ضبطها بغرض وقف جميع الأخطاء البيئية والصحية.

المادة 48 إن إزالة التربة الملوثة بصرف الحسري بالحفر في طريقه بسيطة، وسريعة ونهائية. يجب أن تسلم التربة المستفهرة من الموقع إلى مكان توزيع المنتجات الخضراء.

المادة 49 توجيهات تنفيذية. تكون مدة التوزير المعتمدة على إذن وزاري مقتصراً على فترة محددة من الوقت تبدأ من تاريخ الإخطار بالتزهير. ويجب أن يتبع الترتيب للفترة أخرى على أساس مطلب يقدم وجوبا قبل تاريخ إنهاء الترتيب الموجود.

وجب أن يتم التدقيق بالملت للطلب الذن إلا إذا كان الإذن مخالفاً لهذا المطلب. كذلك يكون ملف المطلب جزء من التفويض الواردي.

وفي حالة إلغاء التنفيذ، ينفج تغريدة من الترتيب مرتفعة بنتائج الرقابة الإدارية المتعلقة بحماية البيئة لسلطات الإشراف المختلفة.

وًبًهٍب أن يتم النمذج بزيادة المشاكل من قبل مسئولي السلطة المختصة في أي وقت.

وًبًهٍ تبقى حقوق الأطراف المختصة محفوظة.

المادة 50. الشروط المطلوبة: بسير الأشغال:

يبلغ مبلغ المشروع إدارة البنية كدبشياتا بشكل دوري أو شركات المرتفع المكلفة بالتخلص من النفقات وموارد تصرفها في غضون أبوتين بعد بدأ أعمال المعالجة.

ويجب إجراء أعمال التوزير بواسطة إحدى الشركات المختصة في هذا المجال.

ويجب أن يتم التركيز و كذلك عملية التخلص من النفقات الناتجة عنها تحت إشراف الجهة المعتمدة من قبل وزيرة البيئة.

تشمل أعمال التوزير ما يلي:
- تجهيز المعايير المطلوبة أثناء العمل;
- إزالة النموذج من العناصر الملوحة;
- فرز وإزالة والأسفل من النفقات الناتجة عن أعمال التوزير.
- ردم الأراضي.

ويجب أن يتم التوزير وإزالة الأرض بطريقة تجعل اللوث المتبقي لا يتجاوز نسبة النص مسحوبة بها، لا يمكن تمصير المشروع أن يبدأ أو يبدأ أي عمل، وأي استدام جد للموقع إلا بعد الموافقة النهائي من قبل إدارة البيئة على التوزير النهائي المصاحب على مستوى التوزير في الموقع.

المادة 51. حماية الهواء

ويجب أن يتم التخلص من نفايات وغيور الحشرات الحزيمي بطريقة ليست فيها إزعاج للحيوان، ولا تشكل خطراً على صحتهم.

من أجل التقليل إلى الحد الأدنى من تشكيل وتطريز الغيا أثناء العمل، يجب أخذ التدابير المناسبة إن وجدت مثل رش الماء. ينبغي توجيه (إلتزاز) لسلاسة المروج، ومناطق العمل وتنزيلات باعتباد الوسائل المناسبة. يجب الحفاظ عليها بطرقية تنقية من تشكيل تطريز الغيا إلى الحد الأدنى. إذا لم الأمر، يجب أن تتم عمليات ومناطق العمل بشكل مناسب.

ويجب أن يتم إعداد الأطروحة تثبيت المواد السخيفة المخصصة في الأرض لتقدر تطريز الغيا إلى أقصى حد. و من أجل تحقيق ذلك يجب أخذ التدابير مثل تطريز المواد المخصصة إذا لم الأمر.

المادة 52. حماية الماء

يمكن إزالة المواد التي تحتوي على الحشرات الحزيمي في الهواء الطفقي أو في شبكة الأنابيب العامة للمياه إذا يمكن أن تكون هذه المواد تثبيث في الحزيمي المائي المستقبلي له، من ناحية تشكيل حظر على مشاركة الإنسان، والتأثير بالمواد الحزيمي وتطريز الإكولوجي المائي، والإضرار بالموارد الحيوية، والتصبح الإيكولوجي المائي، والإضرار بالموارد الطبيعية، وتعطيل الاستخدامات المشروعة الأخرى للمياه، وكذلك تعرضاً لخطر الماء.
المادة 53. الوقاية والتصرف في النفايات. يجب أن يشير المقاول على التأكد من أن نسب أو التخلص من النفايات التي ينتجها تتفق مع جميع المستويات المشار إليها في التشريعات المعمول بها في هذا الشأن. وتنص عليه هذه المسؤولية حتى عند الاعتماد على طرف ثالث للفحص بهذا العمل.

المادة 54. وي ينبغي اعتبار النفايات الناجمة عن أعمال التطور نفايات خطيرة لأنها تكون أثناء تنظيفها عرضة للتلوث، ويمكن أن تكون ملوثة ب الصخور الحريدي. وينبغي أن يتم تخزينها في الظروف المثلى لتجنب تشتتها وبالتالي تكون خطيرة على الصحة. ولا تسامح ولا تنهان في الحماية من هذه النفايات.

المادة 55. على المقاول تعين شخص مكلف بالاتصال ب الجهات البيئية و قادر على توفير المعلومات المطلوبة من قبل السلطات المختصة في أي وقت، ويجب إعلام الإدارة البيئية بسماء الأشخاص الذين يمكن الاتصال بهم وبأسماء موظفيهم إذا لزم الأمر، وذلك في أجل أقصى اليوم الأول من أن يبدأ الأعمال.

المادة 56.

يكلف الوزراة المكلفون بالعمل والتنمية والنقل والشؤون الاجتماعية والداخلية والبيئة والصحة العامة، كل حسب اختصاصه، بتنفيذ هذا المرسوم، الذي سينشر في الرائد الرسمي للجمهورية التونسية.

ANNEXE 1-1
PROGRAMME DE REPÉRAGE DE L’AMIANTE

1. **Parois verticales interieures et enduits**

Composant de la Construction : Murs et poteaux.

Partie du Composant à vérifier ou à sonder : Flocages, enduits projetés, revêtements durs des murs (plaques menuiserie, amianté-ciment) et entourages de poteaux (carton, amianté-ciment, matériau sandwich, carton + plâtre).

Composant de la Construction : Cloisons, gaines et coffres verticaux.

Partie du Composant à vérifier ou à sonder : Flocages, enduits projetés, panneaux de cloison.

2. **Planchers, plafonds et faux plafonds**

Composant de la Construction : Plafonds, gaines et coffres verticaux, poutres et charpentes.

Partie du Composant à vérifier ou à sonder : Flocages, enduits projetés, panneaux collés ou vissés.

Composant de la Construction : Faux plafonds.

Partie du Composant à vérifier ou à sonder : Panneaux.

Composant de la Construction : Planchers.

Partie du Composant à vérifier ou à sonder : Dalles de sol.

3. **Conduits, canalisations et équipements**

Composant de la Construction : Conduits de fluides (air, eau, autres fluides).

Partie du Composant à vérifier ou à sonder : Conduits, calorifuges, enveloppes de calorifuges.

Composant de la Construction : Clapets/volets coupe-feu.

Partie du Composant à vérifier ou à sonder : Clapets, volets, rebouchage.

Composant de la Construction : Portes coupe-feu.

Partie du Composant à vérifier ou à sonder : Joints (tresses, bandes).

Composant de la Construction : Vide-ordures.

Partie du Composant à vérifier ou à sonder : Conduits.
4. ASCENSEUR, MONTE-CHARGE

Composant de la Construction : Trémies.
Partie du Composant à vérifier ou à sonder : Flocages.

ANNEXE 1-2

Liste indicative des applications d’amiante friable et d’amiante non friable :

1. **Amiante friable**

 Flocage par tous procédés,
 Calorifugeage de tuyaux, chaudières, conduites de vapeur,...
 Papiers et cartons d’amiante,
 Isolation thermique de câbles, de conduites d’eau chaude,...
 Appareillage électrique,
 Petits ustensiles de cuisine et d’électroménagers,
 Amiante tissé :
 • joint et garniture d’étanchéité,
 • bande transporteuse résistante à la chaleur,
 • rideau coupe-feu,
 • filtre,
 • ruban d’isolation électrique,
 • bourrelet de calorifugeage,
 • vêtement, gant, tablier ignifuge,...
 • corde d’amiante.

2. **Amiante non friable**

 Amiante-ciment :
 • plaques ondulées, ardoises, panneaux de revêtement de toiture,
 • plaques décoratives de façades,
 • tablettes de fenêtre,
 • tuyaux de descente d’eau, de conduit de cheminée, de gaines de ventilation,...
 Amiante lié à des enduits bitumeux :
 • garnitures de friction, embrayages et freins de véhicules, d’appareillage,...
 • dalles,
 Amiante lié à des colles, mastics, peintures :
 • applications variées

ANNEXE 1-3

Récapitulatif des déchets produits

<table>
<thead>
<tr>
<th>Date de production</th>
<th>Code et dénomination (1)</th>
<th>Type (2)</th>
<th>Nature (3)</th>
<th>Quantité évacuée</th>
<th>Date de l’enlèvement</th>
<th>Nom de l’éliminateur</th>
<th>N° du récépissé</th>
<th>Destination</th>
<th>Mode de traitement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
(2) Types : Matériaux contenant de l’amiante, friable ou non friable,
 Matériaux contaminés par de l’amiante,
 Matériaux non contaminés.
(3) Nature : amiante floqué, bois, ferrailles, calorifuges, plaques, plastiques, etc.

ANNEXE 1-4 : DEMANDE D'AUTORISATION
La demande qui concerne la décontamination d'un site reconnu comme étant pollué par l’amiante doit comprendre une étude renseignant sur l’estimation des volumes pollués, de leur localisation et de leur sensibilité en fonction de la configuration géologique et hydrogéologique, de l’utilisation antérieure et future du site en question et de son voisinage immédiat (étude d’impact). Cette étude doit être établie par une personne agréée par l’Administration de l’Environnement.

Procédé d’échantillonnage:
La méthode de reconnaissance et le procédé d’échantillonnage doivent être justifiés.

Analyse de laboratoire:
Les travaux de laboratoire doivent être effectués par une personne physique ou morale agréée par l’Administration de l’Environnement.

Rapport:
Le rapport doit au moins contenir les renseignements suivants :
- la localisation précise du site;
- un plan de situation;
- les résultats de l’enquête historique sur le site;
- une description détaillée du site mentionnant notamment son utilisation actuelle et son utilisation future;
- une description sommaire de l’environnement humain et naturel dans lequel le site s’inscrit;
- une description du contexte hydrologique, hydrogéologique et lithologique (succession lithologique type) du site en précisant, le cas échéant, les usages de l’eau (ressource pour l’alimentation en eau potable, agricole, industrielle, loisirs etc...), le type et les caractéristiques du ou des aquifères (niveaux piézométriques etc...);
- une coupe géologique schématique montrant les différentes formations géologiques du sous-sol et le niveau de la nappe d’eau souterraine la plus proche;
- indication explicite si le site se trouve au-dessus d’un aquifère exploité,
- bâtiments/structures/infrastructures démolis/à démolir ou gardés/à reconstruire sur le site;
- études/diagnostics réalisés sur le site;
- une information sur la méthodologie appliquée ;
- un compte-rendu des moyens analytiques mis en œuvre;
- le cas échéant, une description de la situation des eaux de surface sur et dans les alentours immédiats du site;
- une description de l’échantillonnage réalisé;
- une présentation des moyens analytiques mis en œuvre;
- une présentation des résultats d’analyses:
 + sur le sol et le sous-sol ;
 + sur les eaux ;
 le cas échéant, sur d'autres produits ou substances soumises à une analyse;
- une description de la (des) pollution(s);
- une délimitation des zones contaminées et une estimation des quantités des masses polluées;
- une évaluation du degré de contamination en tenant compte des concentrations déterminées et de l'impact possible de la contamination sur l'environnement humain et naturel;
- une interprétation des données;
- l’impact constaté, les types de pollution par l’amiante, l’étendue des panaches, la profondeur et la localisation.

Il y a lieu de décrire le procédé d’assainissement / processus de traitement retenu.

En outre, il faudra préciser les points de protection de l’environnement suivants:

- les zones polluées à traiter (sous forme d’un plan détaillé du site), l’emplacement des installations projetées et leurs rayons d’influence (à décrire et à développer);
- les unités constituant le processus de traitement (description sous forme d’un schéma simplifié). Ce schéma devrait également comprendre les ressources consommées à l’entrée, ainsi que les types d’émissions générées (émissions de poussière, de gaz, bruit, etc.) à la sortie de chaque unité;
- les méthodes et les procédés ainsi que les installations, engins et équipements spécifiques dont la mise en œuvre est projetée sur le site en relation avec les travaux d’assainissement (description précise, le cas échéant par zone d’assainissement);
- les limites d’assainissement pouvant être atteintes (à spécifier le cas échéant par polluant) par le procédé d’assainissement;
- la fréquence d’entretien / de vidange des installations de traitement sur le site;
- la description de l’impact et les mesures prévues en vue de limiter l’impact des travaux d’assainissement sur l’environnement humain et naturel à un minimum (lutte contre le bruit et les odeurs, protection de l’air, du sol et du sous-sol ainsi que des eaux);
- la gestion des déchets en général et notamment celles des matières inertes non contaminées et/ou contaminées;
- les quantités estimées de déchets résultant des travaux d’assainissement (estimation par type de déchet), p. ex. matières inertes contaminées, déchets de bois contaminé, etc.;
- les mesures prévues pour assurer le tri des matières inertes non contaminées et contaminées (p. ex. surveillance par un organisme agréé);
- les mesures de protection prévues en relation avec le stockage intermédiaire de déchets sur le site, dont notamment le stockage de matières inertes contaminées;
- l’emplacement des points de contrôle des eaux de surface et souterraines;
- les caractéristiques du milieu d’évacuation des eaux traitées;
- l’emplacement des installations et équipements de traitement de matières contaminées sur le site (le cas échéant);
- l’emplacement des dépôts destinés au stockage intermédiaire de déchets et notamment de matières inertes contaminées et non contaminées sur le site.
- la surveillance des travaux d’assainissement;
- les mesures prévues pour garantir le respect de la conception d’assainissement dans le futur.

Le plan de travail doit comprendre les renseignements suivants:

- la durée des travaux de remise en état du site (sous forme d’un échéancier);
- les travaux prévus et/ou requis en relation avec la remise en état du site
- travaux de démolition, de démontage d’enlèvement de dépôts de matières premières (amiante) et autres, de nettoyage, de terrassement, ...
- travaux de dépollution (le cas échéant).
- la vocation future du site et, le cas échéant, des installations et constructions non enlevées ou démolies;
- les mesures projetées en matière d’esthétique du site;
- les procédés et les engins / équipements spécifiques dont la mise en œuvre est projetée sur le site en relation avec les travaux susmentionnés (le cas échéant);
- les mesures prévues en vue de limiter l'impact des travaux susmentionnés sur l'environnement à un minimum (lutte contre le bruit, protection de l'air, du sol et du sous-sol ainsi que des eaux);
- les quantités de déchets résultant des travaux susmentionnés (estimation par type de déchet);
- les mesures de protection prévues en relation avec le stockage intermédiaire des divers types de déchets sur le site;
- le ou les lieux d'élimination, de valorisation et, le cas échéant, de traitement vers lequel les déchets seront évacués (par type de déchet, y compris les matières inertes).
Annexe 2
PV de l’atelier de restitution et liste des présents

REPUBLIQUE TUNISIENNE

Ministère de l’Equipement
et de l’Environnement

Direction Générale de l’Environnement
et de la Qualité de la Vie (DGEQV)

Étude sur les usages de l’amiante
et la gestion des déchets amiantés en Tunisie

Compte rendu de l’atelier de restitution de l’étude
du 11 Décembre 2014

Suite à l’introduction de l’étude et le rappel de ses objectifs par le Directeur Général de la DGEQV, les experts en charge de l’étude ont été invités à présenter les résultats de la première phase de l’étude.

La journée a été organisée en deux séances : une matinale et l’autre dans l’après-midi. Dans chaque séance se déroule une présentation suivie par un débat.

Séance matinale :
- Présentation de la phase 1 (inventaire exhaustif des produits et déchets amiantés en Tunisie) et de la phase 2 (schéma de gestion, plan d’action de gestion des amiantes et le texte de loi proposé).
- Suite à la présentation, un responsable du ministère de la défense nationale a demandé le niveau de représentativité des échantillons prélevés durant la campagne d’investigation des bâtiments et l’approche méthodologique adoptée lors de la sélection des bâtiments à visiter.
- Le représentant du ministère de la santé publique (DHMPE) a recommandé de revoir et vérifier les endroits où les échantillons ont été prélevés à l’extérieur des bâtiments et considérer une marge d’influence de l’air et des intempéries d’environ 20%.

Il a suggéré également de revoir la possibilité d’avoir des formations sur les procédures de reconnaissance et d’échantillonnage des matériaux et dans l’air.
- Le représentant de l’Institut National de la Santé et de la Sécurité de Travail (ISST) a proposé au ministère de fournir une copie de l’étude pour tous les présents et pourquoi pas la publier complète sur le site web du ministère.

Le groupement des bureaux d’études a informé que le système d’information géographique sera publié sur le site web du ministère. Ce SIG permettra de localiser les déchets amiantés dans toute la Tunisie avec des informations précises sur la quantité et la nature de ces amiantes.

Séance de l’après-midi :

- Le groupement des bureaux d’études a présenté le guide méthodologique pour la gestion des produits et des déchets amiantés.

- Le représentant du ministère de la santé publique (DHMPE) a recommandé le contrôle et le suivi des cas suspects d’avoir une maladie due aux amiantes et enregistré les cas de décès dus à ce fléau

- Certains intervenants ont recommandé de revoir le guide en s’approchant de l’expérience européenne et surtout le guide français pour la gestion des amiantes. Tout en considérant d’une façon plus détaillée le côté impact sur la santé et le mode de suivi des personnes à haut risque (travailleurs et ouvriers dans la maçonnerie par exemple).

La séance a été levée vers 18h et en vue de permettre aux présents de lire attentivement le rapport de synthèse, le représentant de la DGEQV a proposé d’envoyer une copie électronique de ce rapport aux personnes intéressées dans les meilleurs délais.
<table>
<thead>
<tr>
<th>Nom et Prénom</th>
<th>Etablissement</th>
<th>Téléphone</th>
<th>Adresse Mail</th>
<th>Signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoughi Omar</td>
<td>DRE Baja</td>
<td>27 400 11 26 23</td>
<td>omar_zoughi@yahoo.fr</td>
<td>-</td>
</tr>
<tr>
<td>Ismaili Samir</td>
<td>DRE Baja</td>
<td>27 400 11 26 23</td>
<td>omar_zoughi@yahoo.fr</td>
<td>-</td>
</tr>
<tr>
<td>Daouda Bouam</td>
<td>DRE Baja</td>
<td>27 400 11 26 23</td>
<td>omar_zoughi@yahoo.fr</td>
<td>-</td>
</tr>
<tr>
<td>Nawari Youssef</td>
<td>DRE Baja</td>
<td>27 400 11 26 23</td>
<td>omar_zoughi@yahoo.fr</td>
<td>-</td>
</tr>
<tr>
<td>Haouiti Noured</td>
<td>DRE Baja</td>
<td>27 400 11 26 23</td>
<td>omar_zoughi@yahoo.fr</td>
<td>-</td>
</tr>
<tr>
<td>Di Bibi Youna</td>
<td>DRE Baja</td>
<td>27 400 11 26 23</td>
<td>omar_zoughi@yahoo.fr</td>
<td>-</td>
</tr>
<tr>
<td>Sachedi Samir</td>
<td>DRE Baja</td>
<td>27 400 11 26 23</td>
<td>omar_zoughi@yahoo.fr</td>
<td>-</td>
</tr>
<tr>
<td>Aziz Hamed</td>
<td>DRE Baja</td>
<td>27 400 11 26 23</td>
<td>omar_zoughi@yahoo.fr</td>
<td>-</td>
</tr>
<tr>
<td>Imen Jabeur</td>
<td>DRE Baja</td>
<td>27 400 11 26 23</td>
<td>omar_zoughi@yahoo.fr</td>
<td>-</td>
</tr>
<tr>
<td>Moha Mohamed</td>
<td>DRE Baja</td>
<td>27 400 11 26 23</td>
<td>omar_zoughi@yahoo.fr</td>
<td>-</td>
</tr>
<tr>
<td>Khemiri Cyrine</td>
<td>DRE Baja</td>
<td>27 400 11 26 23</td>
<td>omar_zoughi@yahoo.fr</td>
<td>-</td>
</tr>
<tr>
<td>Kalla Hassen</td>
<td>DRE Baja</td>
<td>27 400 11 26 23</td>
<td>omar_zoughi@yahoo.fr</td>
<td>-</td>
</tr>
<tr>
<td>Mohamed Bousaad</td>
<td>DRE Baja</td>
<td>27 400 11 26 23</td>
<td>omar_zoughi@yahoo.fr</td>
<td>-</td>
</tr>
<tr>
<td>Abderrahman Nadjib</td>
<td>DRE Baja</td>
<td>27 400 11 26 23</td>
<td>omar_zoughi@yahoo.fr</td>
<td>-</td>
</tr>
<tr>
<td>Ali Hassen</td>
<td>DRE Baja</td>
<td>27 400 11 26 23</td>
<td>omar_zoughi@yahoo.fr</td>
<td>-</td>
</tr>
<tr>
<td>Sami Debbi</td>
<td>DRE Baja</td>
<td>27 400 11 26 23</td>
<td>omar_zoughi@yahoo.fr</td>
<td>-</td>
</tr>
<tr>
<td>Abderzine Ibtihaj</td>
<td>DRE Baja</td>
<td>27 400 11 26 23</td>
<td>omar_zoughi@yahoo.fr</td>
<td>-</td>
</tr>
<tr>
<td>Hanen Kettou</td>
<td>DRE Baja</td>
<td>27 400 11 26 23</td>
<td>omar_zoughi@yahoo.fr</td>
<td>-</td>
</tr>
<tr>
<td>Battaiche Reza</td>
<td>DRE Baja</td>
<td>27 400 11 26 23</td>
<td>omar_zoughi@yahoo.fr</td>
<td>-</td>
</tr>
<tr>
<td>Youssefi Bachir</td>
<td>DRE Baja</td>
<td>27 400 11 26 23</td>
<td>omar_zoughi@yahoo.fr</td>
<td>-</td>
</tr>
<tr>
<td>Abderrazak Missaoui</td>
<td>DRE Baja</td>
<td>27 400 11 26 23</td>
<td>omar_zoughi@yahoo.fr</td>
<td>-</td>
</tr>
<tr>
<td>Shaharmandi Meqan</td>
<td>DRE Baja</td>
<td>27 400 11 26 23</td>
<td>omar_zoughi@yahoo.fr</td>
<td>-</td>
</tr>
<tr>
<td>Surahmane Tarhouni</td>
<td>DRE Baja</td>
<td>27 400 11 26 23</td>
<td>omar_zoughi@yahoo.fr</td>
<td>-</td>
</tr>
<tr>
<td>Najla Bouchik</td>
<td>DRE Baja</td>
<td>27 400 11 26 23</td>
<td>omar_zoughi@yahoo.fr</td>
<td>-</td>
</tr>
<tr>
<td>Chahbi Youssef</td>
<td>DRE Baja</td>
<td>27 400 11 26 23</td>
<td>omar_zoughi@yahoo.fr</td>
<td>-</td>
</tr>
<tr>
<td>Daouda Youssfi</td>
<td>DRE Baja</td>
<td>27 400 11 26 23</td>
<td>omar_zoughi@yahoo.fr</td>
<td>-</td>
</tr>
<tr>
<td>Drali Nouhoum</td>
<td>DRE Baja</td>
<td>27 400 11 26 23</td>
<td>omar_zoughi@yahoo.fr</td>
<td>-</td>
</tr>
<tr>
<td>Ben Saïd Khechma</td>
<td>DRE Baja</td>
<td>27 400 11 26 23</td>
<td>omar_zoughi@yahoo.fr</td>
<td>-</td>
</tr>
<tr>
<td>Fekki Ibtihaj</td>
<td>DRE Baja</td>
<td>27 400 11 26 23</td>
<td>omar_zoughi@yahoo.fr</td>
<td>-</td>
</tr>
<tr>
<td>Slim Khechmi</td>
<td>DRE Baja</td>
<td>27 400 11 26 23</td>
<td>omar_zoughi@yahoo.fr</td>
<td>-</td>
</tr>
<tr>
<td>Ben Salah Issa</td>
<td>DRE Baja</td>
<td>27 400 11 26 23</td>
<td>omar_zoughi@yahoo.fr</td>
<td>-</td>
</tr>
</tbody>
</table>

Ministère de l’Equipement et du Développement Durable
Direction Générale de l’Environnement et de la Qualité de Vie
Etude sur les usages de l’amiante et la gestion des déchets amiantés en Tunisie
Séminaire de restitution - Golden Tulip El Menzah le 13 Décembre 2014

COMETE Engineering/PLINIOS SA
Annexe 3

Guide Méthodologique

I. DEFINITION ET GENERALITES SUR L’AMIANTE

L’amiante est un nom générique donné à une variété fibreuse de six minéraux naturels qui ont été utilisés dans une variété de produits commerciaux. Ces produits minéraux possèdent une résistance élevée à la traction, une forte flexibilité, une résistance particulière à la dégradation chimique et thermique, une résistance électrique élevée, et une certaine capacité à être tissés.

Les minéraux de l’amiante appartiennent à deux groupes de minéraux des silicates naturels provenant de l’altération de roches magmatiques comme les serpentinites : les serpentines et les amphiboles. La variété d’amiante serpentine dominante est le chrysotile (amiante blanche) qui représente la plupart de l’amiante utilisé depuis la fin des années 1800. On distingue deux types d’amiantes

- **les amiantes dures** qui sont de la famille des hornblendes : dont la hornblende elle-même, la grunérite (amosite), l’antophyllite, la trémolite, la crocidolite et l’actinolite. C’est la variété d’amiantes les plus dangereuses. Par vieillissem et altération, par friction et par désagrégation mécanique fine, ces minéraux partent en fibrilles micrométriques et se soulevant totalement dans l’air.

- **Les amiantes dites souples** surtout parce qu’elles se prêtent à la filature utile pour certains usages (corderies réfractaires, textiles de protection thermique, gants et tabliers d’isolation thermique, courroies de transmission mécanique…), relèvent du groupe de la serpentine (voisin magnésien des kaolins ordinaires). A ce groupe appartient la serpentine qui sert pour la fabrication des garnitures de freins, pour la production de friction mécanique en général, pour l’isolation…, mais surtout le chrysotile formé de fibres spectaculairement longues et dont la souplesse mécanique est fort trompeuse, hautement adaptées à la filature.

![Chrysotile](image1)
![Crocidolite](image2)
![Amosite](image3)

II. DESCRIPTION ET IDENTIFICATION DES PRODUITS CONTENANT DE L’AMIANTE

Fatalement, l’amiante a réussi pour six décennies successives, son intrusion et son éparpillement dans tous les secteurs d’équipement et d’infrastructures :

- non seulement sous forme de tôle et plaques en AC de hangars, d’étables, de cloisons, de toitures de maisonnettes ou d’abris de voitures, de faux plafonds,..., dont il est réellement difficile de cerner les quantités et les métrés à l’échelle du Pays et par secteur ;

- mais surtout sous-forme de tuyauteries de divers calibres : dans le BTP (collecteurs d’eau pluviales, revêtements de colonnes en béton, conduites d’assainissement, desserte d’AEP, conduites de drainage ou d’irrigation dans le domaine agricole, etc. ;
Dans le tableau suivant une liste de produits qui peuvent contenir de l’amiante. On signale dans ce cadre que si l’âge d’un article dépasse les 20 ans il est fort suspecté de contenir de l’amiante.

<table>
<thead>
<tr>
<th>Amiante brut en vrac</th>
<th>Bourre, Flocages, Isolant, Protection thermique et acoustique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amiante dans des poudres,</td>
<td>Enduits, Enduits de façade, Enduits-plâtre de protection incendie, Mortiers colles, Mortiers de protection incendie, Mortiers réfractaires, Poudre à mouler</td>
</tr>
<tr>
<td>des produits minéraux</td>
<td>(sauf amiante–ciment)</td>
</tr>
<tr>
<td>(sauf amiante–ciment)</td>
<td></td>
</tr>
<tr>
<td>Amiante dans des liqueurs,</td>
<td>Colles, Enduits, Mastics, Mousses, Pâte à joint, Peintures</td>
</tr>
<tr>
<td>ou des pâtes</td>
<td></td>
</tr>
<tr>
<td>Amiante en feuilles ou en</td>
<td>Cartons, Cloisons, Coquilles, Faux-plafonds, Feuilles, Feutres, Filtres, Panneaux, Papier, Plaques</td>
</tr>
<tr>
<td>plaques</td>
<td></td>
</tr>
<tr>
<td>Amiante tissée ou tressée</td>
<td>Bandes, Bourrelets, Cordons, Couvertures, Matelas, Presse–étoupe, Rideaux, Rubans, Tissus, Tresses, Vêtements</td>
</tr>
<tr>
<td>Amiante dans une résine ou</td>
<td>Embrayage, Freins, Isolateurs électriques, Joints, Matériaux composites, Matière plastique, Mousses, Nez de marches, Revêtements muraux, Revêtements de sols en dalles ou en rouleaux</td>
</tr>
<tr>
<td>une matière plastique</td>
<td></td>
</tr>
<tr>
<td>Amiante–ciment</td>
<td>Bacs, Bardage, Canalisations, Cloison, Eléments de toiture, Gaine, Plaque, Plaques de toiture, Tablettes, Tuyaux, Vêtures</td>
</tr>
<tr>
<td>Amiante dans des produits</td>
<td>Bardeaux bitumeux, Bitumes, Colles bitumineuses, Enduit de protection anticorrosion (voitures, wagons), Enduit de protection d’étanchéité (écluses, bassins, canaux…), Etanchéité de toiture, Mastics, Revêtements routiers</td>
</tr>
<tr>
<td>noirs</td>
<td></td>
</tr>
<tr>
<td>Amiante dans des matériels</td>
<td>Chaudières, Clapets coupe–feu, Etuves, Fours, Portes, Portes d’ascenseur, Radiateurs</td>
</tr>
<tr>
<td>et équipements</td>
<td></td>
</tr>
</tbody>
</table>

La présence de l’amiante dans un produit ne peut être confirmée que par l’analyse de laboratoire. Cependant, il existe des moyens pour suspecter la présence de l’amiante dans un produit ou dans un endroit, tel que le constat d’une texture de micro-chevelure au niveau des bouts d’un morceau coupé et la résistance au feu (utiliser un briquet par exemple).
III. USAGE DE L’AMIANTE EN TUNISIE, PRODUITS ET LIEUX AMIANTÉS

Amiante et produits à base d’amiante importés, données douanières

En plus de l’amiante en poudre ou en flocons, la Tunisie importe aussi plusieurs produits à base d’amiante, en particulier de produits en amiante ciment et des garnitures de friction pour machineries et véhicules de transport. La nomenclature douanière pour l’amiante et articles importés contenant au moins en partie de l’amiante, est la suivante :

<table>
<thead>
<tr>
<th>Code NSH</th>
<th>Produit</th>
</tr>
</thead>
<tbody>
<tr>
<td>2524</td>
<td>Amiante en fibres, en flocons, en poudre et autre amiante</td>
</tr>
<tr>
<td>6811</td>
<td>Ouvrages en amiante ciment, cellulose-ciment ou similaires</td>
</tr>
</tbody>
</table>
Les sites pollués des usines de transformation de l’amiante
- SICOAC, active de 1962 à 1997,
- CIAMIT, active de 1980 à 2002 ;
- El Mawassir, active de 1984 à 2012,

Les infrastructures et organismes gros consommateurs de produits contenant de l’amiante
Fatalement, l’amiante a réussi pour six décennies successives, son intrusion et son éparpillement dans tous les secteurs d’équipement et d’infrastructures :
- non seulement sous forme de tôle et plaques en AC de hangars, d’étables, de cloisons, de toitures de maisonnettes ou d’abris de voitures, de faus plafonds, ..., dont il est réellement difficile de cerner les quantités et les métrés à l’échelle du Pays et par secteur ;
- mais surtout sous-forme de tuyauteries de divers calibres : dans le BTP (collecteurs d’eau pluviales, revêtements de colonnes en béton, conduites d’assainissement, desserte d’AEP, conduites de drainage ou d’irrigation dans le domaine agricole, etc. ;

A ce titre, la SONED, l’ONAS et le Ministère chargé de l’Agriculture et des Ressources hydrauliques (DGBTH, DGGGR, CRDAs, Direction Générale des Sols), ont pour toujours été les gros consommateurs de produits en amiante ciment (tôles et tuyauteries), et surtout de la manière la plus sereine, jusqu’à l’éveil de 2000-2005, lorsqu’on s’est rendu compte que nous sommes et notre génération future, pertinemment en face d’un danger véritable : l’amiante.

Parmi les autres utilisateurs des conduites amiantée-ciment, on cite les communes (réseau de drainage des eaux pluviales) et quelques composantes des barrages, avec une quantité relativement minime par rapport les organismes cités ci-dessus. En effet, la quantité inventoriée dans le cadre de notre étude est d’environ 516 km.

Autres secteurs, autres lieux et autres produits
Une remarque s’impose pour d’autres secteurs, d’autres lieux et pour l’usage de la laine de verre :
- Pour le parc d’engins mobiles, des quantités considérables de pièces de frictions (plaquettes de freins, disques d’embrayages) contenant des quantités de 10 à 15% d’amiantes ont été importées du moins entre 1960 et 2000, jusqu’à ce que ce type de produits soit banni (2000-2005) et donc la substitution de l’amiante par d’autres produits non dangereux.
- Pour l’économie d’énergie et l’isolation, l’amiante a longtemps été utilisé pour l’isolation des conduites de chauffage, ou comme un isolant dans le domaine de la frigorification, pour les fours, ...
- Il faut bien noter que la laine de silice a bien été utilisée comme l’amiante, notamment dans le BTP et dans le domaine du chaud froid.

Zones de bâtiments susceptibles de contenir de l’amiante
Bien que l’utilisation de l’amiante a été interdite, des millions de mètres cubes de matériaux contenant de l’amiante sont encore en place dans les bâtiments existants en Europe. C’est aussi dire qu’il est vain de penser à pouvoir se débarrasser totalement de l’amiante y compris dans les pays occidentaux. Typiquement, ces matériaux peuvent être présents sous les formes suivantes.

✓ En vrac:
 o Amiante cartons et papier pour l’isolation thermique (cheminées, fours, gaz ou convecteurs électriques, radiateurs, etc.), joints et protection thermique de surface;
 o Plaques pour faux plafonds ou revêtements ignifugés, portes et cloisons coupe-feu, cloisons légères.
✓ Fils ou tissus:
 o Fil en cordon ou corde, calfeutrage et matériel de revêtement isolant (porte de chaudière, chauffage, tuyauterie de gaz d’échappement des moteurs, etc.);
 o Bandes de tissu pour protection contre la chaleur;
o Rubans isolants électriques (appareils électriques et réseaux de gaines);
o résistant au feu, isolation acoustique ou l’expansion de l’étanchéité des joints sur les structures ou dans des partitions.
✓ Produits en amiante-ciment:
o Feuilles (tôles) planes ou ondulées, tuiles, ardoises et autres panneaux de toiture;
o Rebords de fenêtres, feuilles de revêtement de façade;
o Cloison interne et panneaux, et faux panneaux de plafond;
o Autres panneaux ou étagères de construction, formes permanentes;
o Conduits de cheminées, conduits de ventilation, tuyaux de descente, vide-ordures;
Approvisionnement en eau et tuyaux drainage;
o Clapets coupe-feu et panneaux ignifuges;
o Jardinières et articles de jardin.
✓ Incorporé dans différents liants (résines, bitumes, etc.):
o Carrelage de sol (vinyle-amiante), linoléum;
o Adhésifs pour divers revêtements de sol;
o Mastics (vitrage, etc.);
o Textures de revêtements et peintures;
o Imperméabilisation de toit en feutres bitumineux, en rouleaux ou en feuilles toitures, revêtements bitumineux d’isolation thermique;
o Joint imperméable, joint de dilatation, de plomberie, moteur, etc., joint de fermeture et étanchéité;
o Nivellement et couches de finition pour les planchers et cloisons intérieures,
o Carrelage mortiers-colles, adhésifs et revêtements imperméables;
o Revêtements et mortiers à base de plâtre pour la protection incendie;
o Matériaux de friction (placettes de frein pour les ascenseurs, moteurs et machines diverses);
o Composants d’isolation électrique à base de résine.

Les matériaux contenant de l’amiante peuvent donc être rencontrés n’importe où dans un bâtiment. Plombiers, tuyautiers, chauffagistes, électriciens, couvreurs, installateurs de faux plafond, maçons, carreleurs, ouvriers de peinture, artisans de plaques de plâtre, les ingénieurs de levage, etc. peuvent tous respirer la poussière d’amiante lors d’opérations en apparence inoffensifs.

IV. RISQUES ET EFFETS DE L’AMIANTE SUR LA SANTE ET L’ENVIRONNEMENT

L’exposition environnementale des amiantes et des produits contenant de l’amiante est définie comme une exposition à la pollution de l’air extérieur (environnement extérieur) et à celle de l’air intérieur (environnement ambiante) par des fibres d’amiante.

Pollution de l’environnement extérieur
✓ Site de stockage à ciel ouvert des déchets contenant de l’amiante qui conduisent à la libération de fibres pouvant migrer à distance du site.
✓ Zone urbaine et/ou rurale polluée : 1) lors d’opérations de démolition ou d’enlèvement d’installations contenant de l’amiante ; 2) dans l’environnement des zones de stockages des déchets amiantés ou d’usine de fabrication de produits amiantés ; 3) liée au trafic routier (freins, embrayages, usure du revêtement routier contenant de l’amiante).

Pollution de l’environnement intérieur
✓ Exposition para-professionnelle passive ou exposition « intramurale » à de l’amiante en suspension dans l’air, soit du fait de la dégradation de bâtiments qui en contenaient, soit du fait d’interventions sur ceux-ci.
✓ Exposition domestique par contact avec les vêtements de travail du conjoint et/ou conjointe (dont l’activité professionnelle les amenait à intervenir sur des matériaux contenant de l’amiante) ou des objets ménagers contenant de l’amiante (planché à repasser, panneaux isolants, grille-pain, appareils de chauffage mobiles).
Exposition liée aux activités de bricolage comme un changement de garnitures de freins, la construction d’un abri de jardin en fibrociment ou encore le changement de joints contenant de l’amiante (fours de cuisine, gazinières, cheminées, etc.)

Quelles sont les pathologies liées à l’amiante ?

- Les fibres circoncrites de la plèvre
- L’asbestose
- Le mésothéliome malin diffus
- Le cancer broncho-pulmonaire

Le délai de latence entre l’exposition à l’amiante et ces pathologies est de 20-40 ans.

Il est essentiel pour toute personne qui a été en contact avec de l’amiante, de vérifier par auscultation d’un médecin du travail si l’un des symptômes suivants apparaît :

- Essoufflement, respiration sifflante ou enrouement;
- Une toux persistante qui s’aggrave au fil du temps;
- Sang dans les expectorations (fluide) crachées par les poumons;
- Douleur ou oppression dans la poitrine;
- Difficulté à avaler;
- Gonflement du cou ou du visage;
- Perte d’appétit;
- Perte de poids;
- Fatigue ou anémie.

V. PRODUITS DE SUBSTITUTION DE L’AMIANTE

Des recherches et des applications à une échelle internationale, ont déjà dépassé l’époque de la nécessité de l’usage de l’amiante dans les produits utilitaires du bâtiment et de l’industrie. Les produits de substitution englobant une variété de matériaux sont aujourd’hui largement commercialisés, dont les plus communs sont des fibres de PVC et de cellulose, des fibres végétales, des métaux divers, des tuiles, des fibres de verres variés, etc., utilisés pour fabriquer des ciments fibres pour toitures, pour des tuyauteries diverses, mais aussi pour des matériaux de revêtements, de friction (plaquettes et garnitures de freins, disques d’embrayage, etc.), réfractaires, et d’isolation. Il existe donc bien un ensemble d’autres produits qui peuvent remplacer l’amiante pour ses différents usages classiques. Les mêmes Pays auparavant producteurs et exportateurs d’amiante redeviennent aujourd’hui exportateurs de ces matériaux de substitution de l’amiante et de ses produits d’usage et d’application.

Notons aussi la conversion déjà acquise des deux usines de SICOAC et d’El Mawassir, passant du stade classique de fabriques basées pour des décennies sur l’usage de l’amiante, au stade d’usines modernes et propres, produisant des composés et tuyauteries à base de matériaux de substitution divers de ce poison qui tue, qu’est l’amiante. Cette conversion est passée pratiquement inaperçue et surtout sans incidences, autres que celles sûrement positives et plus précisément en ce qui concerne les retombées sur la santé de l’environnement et celle de l’Homme.

Force est aussi de constater la conversion progressive de réseaux publics constitués de tuyauteries et conduits en amiante ciment, à des équipements qui en sont totalement dépourvus, utilisant les produits de substitution de l’amiante. Les efforts des organismes autrefois gros consommateurs d’amiante ciment (SONEDE, CRDAs, etc.), pour réussir cette conversion, ont été rapides et conduits pratiquement sans incidences économiques sensibles. Au contraire, les gains pour la santé et pour l’environnement, s’avèrent sûrement inégalables.
VI. REGLEMENTATIONS NATIONALES LIEES A LA GESTION DES DECHETS D’AMIANTES EN TUNISIE

La législation en Tunisie a déjà classé l’amiante et ses déchets comme produits dangereux, et prévu des textes pour son transport et sa gestion jusqu’au lieu définitif de mise en décharge :

- Loi n°96-41 du 10 juin 1996 relative aux déchets et au contrôle de leur gestion et de leur élimination ;
- Le décret 2000-2339 du 10 octobre 2000, fixant la liste des déchets dangereux, classe les déchets des unités de production d’ouvrage en amiante ainsi que les déchets contenant de l’amiante comme déchets dangereux à traiter spécifiquement
- Loi 97-37 du 2 juin 1997, relative au transport par route des matières dangereuses ;
- Décret 2001-143 du 5 janvier 2001 fixant les règles de sécurité applicables au chargement, au déchargement et à la manutention des marchandises dangereuses dans les ports maritimes du commerce ;
- Arrêté des Ministres de l’Intérieur et du transport du 18 mars 1999 fixant le modèle de fiche de sécurité relative au transport de matières dangereuses par route et les consignes qu’elle doit comporter ;
- Arrêté des Ministres de l’intérieur et du transport du 19 mai 2000 fixant les matières dangereuses dont le transport est soumis à l’obtention d’une feuille de route, le modèle de cette feuille et les conditions de sa délivrance.

L’étude réalisée par le ministère chargé de l’environnement en 2014 a proposé un texte de décret pour :

- L’interdiction de l’amiante en Tunisie,
- Fixer une norme pour l’exposition à l’amiante dans les immeubles en Tunisie,
- Imposer le guide de bonnes pratiques lors des travaux d’enlèvement de l’amiante et la gestion des produits et déchets en contenant,
- Imposer le guide de bonnes pratiques lors des travaux de gestion et de remise en état des sites pollués par l’amiante.

VII. NORMES EN VIGUEURS

Normes limites fixées pour l’air ambiant et pour l’exposition à l’amiante

En respect de la législation Européenne de protection des ouvriers en ce qui les risques d’exposition à l’amiante (Directive 83/477/CEE ; comme amendé par la Directive 2003/18/CEE), les employeurs doivent s’assurer qu’aucun ouvriers ni personnel ne s’expose à une concentration de l’amiante dans l’air supérieur à 0.1 fibre par cm³, représentant la moyenne pondérée de huit (8) heures de travail (Article 8). Ces Directives Européennes ont été adoptées par la législation des Etats Membres. La même limite est appliquée aux USA.

Ainsi, en respect de la législation européenne, la limite d’exposition de l’amiante en fibres dans l’air est de 0.1 fibres par cm³ (8h TWA : time weighted average).

Dans la plupart des Pays Membres, la limite de propreté de l’air est de 0.010 fibres par cm³ (Grande Bretagne HSG 248 & MDHS 39/4, Grèce PD 212/2006,...). La loi mentionne aussi que les mesures doivent être effectuées en lumière polarisée/analysée et par un microscope à contraste de phase. L’un des Pays Membres exige que les concentrations doivent être inférieures à 0.005 fibres par cm³, comme test pour autoriser la réoccupation d’un bâtiment, et la mesure doit être effectuée par un
Microscope Electronique à Balayage (France, INRS ED815). Dans d’autres Pays Membres, les mesures de l’amiante dans l’air pour la certification de propreté doivent aussi être effectuées par le Microscope Electronique à Balayage (Allemagne, Italie). Aux Etats Unis, la limite de propreté de l’air (EPA, safe occupation level) est de 0.01 fibres par cm³ (40 CFR 763.90 (i) (5) et 29 CFR 1926.110(g)).

Généralement, en accord avec la pratique international la plus commune, la limite considérée pour la propreté de l’air en matière d’amiante, est aussi basse que *0.010 fibres par cm³*.

VIII. DECHETS D’AMIANTES

Des quantités importantes d’amiante ont investi plusieurs secteurs, notamment les infrastructures et équipements de base dans pratiquement tous les gouvernorats du Pays. En se basant dans une première approximation sur la quantité totale d’amiante brut importé et transformé dans les trois usines nationales (SICOAC, CIAMIT et EL Mawassir dans la période 1962-2012, soit environ 121 000 tonnes, et sur leurs capacités déclarées de production en amianté ciment, on peut estimer une quantité totale (produits + déchets) de l’ordre de 1,12 millions de tonnes en AC. La partie majeure de cette quantité existe :

- Sur les sites des usines où les résidus d’amiante ciment et déchets classés comme dangereux ont déjà fait l’objet d’une mise en décharge contrôlée sur les deux sites de CIAMIT et de SICOAC ; un programme similaire a aussi été proposé pour l’usine d’El Mawassir et qui devrait être mis en exécution après la reconversion de cette usine en 2013 ;
- Comme réseaux d’infrastructures et équipements de base nationaux (ONAS, SONEDE, CRDAs), où des stocks et des rebus de conduites en amiante ciment existent sur les sites mèmes de districts de ces organismes ; ainsi, un total linéaire de 35 550 km (34 474 km de conduites installées et 76,4 km de conduites en stocks pour maintenance des réseaux) de conduites en AC.
- Comme éléments formant partie intégrante de bâtiments divers (conduites, tôles ondulées et plaques de toits, toitures d’abris, de hangars, ou d’étables…), dans des lieux publics parfois hautement fréquentés par la population (hôpitaux, écoles, administrations, …) comme révélé par les investigations conduites dans cette étude.
- Les quantités qui sont utilisées par les privés (tôles de couverture dans les hangars et les fermes agricoles, calorifugeage et flocage dans les cliniques et établissements hôteliers, quelques immeubles et écoles privé, les produits commercialisés dans les industries de peintures, d’étanchéité et les pièces mécaniques).

La prise de conscience du danger de l’amiante, et la tendance à la décision de bannir définitivement son usage en Tunisie à l’instar des Pays voisins, surtout ceux de la rive Nord de la Méditerranée, débouche sur un certain nombre de mesures nécessaires à prendre surtout pour la décennie en cours et celle à venir.

IX. MESURES DE SECURITES POUR LA MANIPULATION DES PRODUITS ET DECHETS AMIANTES,

MATERIEL DE PROTECTION ET DE SECURITE

L’amiante peut se trouver incorporé dans une variété de matériaux. Si les fibres peuvent être libérées, le danger devient imminent surtout par inhalation de fibres dans l’air. Les microfibrilles peuvent être incorporées dans les poumons et peuvent y rester pour une longue période (des années). Ceci peut être à l’origine d’une longue maladie, qui peut s’étendre même à des décades suivant l’inhalation de l’amiante.

Si les fibres d’amiante sont faiblement liées dans le produit ou dans le matériau, ceux-ci étant friable selon les conditions, ceci peut augmenter notablement le risque de libération des fibres dans l’air. Au
contraire si les fibres sont maintenues par un liant dans un matériau solide, non friable, les fibres se libèrent beaucoup moins.

Comme solution immédiate pour la réduction des concentrations de fibres d’amianté dans l’air, et donc de la contamination, plusieurs proposition peuvent être suggérées :

- L’étiquetage des matériaux contenant de l’amianté et l’information directe des occupants des locaux pour prévenir toute intervention ou dommages pouvant être occasionnés aux matériaux amiantés existants.

- Le contrôle périodique et la maintenance régulière des matériaux amiantés pour prévenir tous travaux pouvant les impliquer (interdir strictement tout travail pouvant provoquer leur rupture et détérioration, en libérant les fibres dans l’atmosphère, ensablement, frottement, grattage, etc.). Spécialement, les matériaux en amianté ciment (tôles ondulées en amianté ciment, en plaque ; cheminées,...), à l’exclusion de leurs débris, doivent être périodiquement entretenus (par exemple : peinture, restauration des trous ou des craquelures, etc.).

- Pour les fragments en amianté ciment retrouvés en plusieurs lieux dans les locaux, leur enlèvement immédiat est nécessaire.

- Dans le cas d’un dommage important, d’une rénovation ou de travaux de manutention : pour les carreaux plastiques du sol (contenant de l’amianté), on peut proposer soit leur élimination, soit leur recouvrement par un autre matériau (par ex. par du matériau plastique) et pour les autres matériaux (amiante ciment, joints d’étanchéité, d’isolation,...) leur élimination totale.

- En cas d’enlèvement d’un matériau contenant de l’amianté, les travaux doivent être conduits par une équipe contractuelle expérimentée et agréée, et par un personnel qui a toutes les qualifications statutaires pour savoir appliquer toutes les mesures de sécurité strictes et nécessaires.

Avant et pendant les travaux d’élimination de matériaux contenant de l’amianté, les principes généraux suivants doivent être appliqués afin de réduire l’exposition à l’amianté et les émanations de fibres de ce produit dans l’air.

- déterminer l’étendue et l’emplacement des matériaux contenant de l’amianté ;

- limiter l’accès à la zone de travail de manière appropriée (par exemple bande, barrière, ou enceinte complète) ;

- mettre en place des panneaux d’avertissement clairs et suffisants (par exemple danger amianté, entrée limitée au personnel autorisé) ;

- enfermer ou protéger la zone avoisinante (par exemple avec des feuilles de polyéthylène résistantes), en fonction de l’ampleur du travail pour éviter la contamination par des fibres d’amiante en suspension dans l’air (voir plus loin) ;

- limiter au maximum le nombre des personnes autorisées dans la zone ;

- utiliser un appareil de protection respiratoire adéquat et un équipement de protection individuel (par exemple combinaison jetable et souliers lavables) ;

- appliquer des techniques appropriées pour limiter la libération des fibres (par exemple humidification, techniques de dépose au mouillé, ventilateur d’aspiration locale, etc.) ;
Synthèse de l’Etude sur les usages de l’amiante et la gestion des déchets amiantés en Tunisie

DGEQV-2014

COMETE Engineering/PLINIOS SA 172

- éviter l’endommagement des matériaux contenant de l’amiante (par exemple enlever et évacuer des morceaux entiers, enlever et envelopper des panneaux complets);
- mettre dans un sac à double parois ou envelopper puis étiqueter (amiante) tous les déchets pouvant contenir de l’amiante avant de les évacuer;
- nettoyer complètement la zone de travail
- protéger les itinéraires d’évacuation pour empêcher la diffusion de la contamination par l’amiante;
- assurer un emballage sécurisé (par exemple enveloppage ou mise en sac) et un stockage sécurisé des déchets d’amiante (par exemple benne verrouillable)
- assurer un transport sécurisé vers un centre d’élimination agréé de déchets;
- éliminer les déchets contenant de l’amiante uniquement dans des sites agréés pour l’élimination d’amiante (conformément aux réglementations nationales);

Protection des particuliers manipulant de l’amiante

Il est recommandé de faire appel à des professionnels pour la manipulation de matériaux en amiante. Toutefois, dans le cas où le retrait d’amiante est réalisé par le particulier lui-même, il faudra veiller à respecter les règles de précaution suivantes :

- Se protéger avec une combinaison qui sera jetée après chaque utilisation - un masque équipé d’un filtre type FFP3 (masque jetable)
- Éviter l’émission de poussières par :
 - Le démontage des éléments de fixation quand cela est possible
 - L’utilisation d’outils manuels ou à vitesse lente (les outils à vitesse rapide étant à proscrire)
 - La manipulation de l’amiante avec précaution (jeter les éléments sur le sol risquerait de les briser et d’émettre des poussières)
 - L’humidification locale des matériaux amiantés (en tenant compte du risque électrique)
 - Le nettoyage de la zone polluée à l’aide d’un aspirateur à filtration absolue (pas de balai)
 - Le stockage des déchets issus des travaux dans des sacs étanches (y compris les vêtements et le masque) "et protéger les autres en tenant à distance les personnes non concernées par les travaux"
X. METHODES, CONDITIONS ET PROCEDURES DE DESAMIENTAGE

Retrait de matériaux en amiante de ciment non friable

(Déchets d’amiante ciment, plaques de toiture en amiante-ciment, conduites en amiante ciment)

Les matériaux de couverture, et notamment les plaques ondulées, ont constitué la majorité des produits en amiante-ciment commercialisés jusqu’à leur interdiction.

D’autres produits en amiante-ciment ont été largement utilisés dans le bâtiment : produits de bardage et de revêtement, produits de cloisonnement ou de doublage intérieur, canalisations, gaines, éléments composites assemblés par collage, etc.

La plupart de ces matériaux sont fixés sur un support par des crochets, des tire-fonds, des boulons, des agrafes ou des vis ; ils sont parfois scellés entre eux (canalisations) ou à des supports de maçonnerie.

Ces matériaux sont constitués d’un mélange homogène de ciment et de fibres et, bien que fortement liés, sont susceptibles de libérer des fibres d’amiante soit :

- par dégradation mécanique brutale (casse, perçage),
- par opération d’usinage à grande vitesse de coupe (tronçonnage),
- par chute et éparpillement de végétaux (lichens, mousses) secs, qui ont colonisé et dégradé les surfaces des plaques.

Sauf impossibilité technique, l’enlèvement de matériaux en amiante-ciment doit se faire par déconstruction et doit s’accompagner de règles visant à protéger les opérateurs et l’environnement contre le risque lié aux fibres d’amiante.

Pour le retrait de l’amiante-ciment (pour les travaux de démolition ou de rénovation), la méthode pratique consiste est:

- enlever l’amiante-ciment avant la démolition;
- protéger de la contamination les autres surfaces (pour les travaux de rénovation);
- éviter de casser les matériaux d’amiante-ciment; enlever le matériau en entier;
- maintenir le matériau mouillé lorsqu’on travaille dessus mais ne pas utiliser trop d’eau, car ceci créerait de la boue;
- si l’amiante ciment à enlever se trouve à une grande hauteur, descendre le matériau d’amiante ciment sur une surface dure propre; utiliser des méthodes d’accès sécurisées pour retirer les matériaux amiante ciment se trouvant à des emplacements élevés ;
- enlever le plus tôt possible les déchets et les débris contenant de l'amiante pour qu'ils ne soient pas écrasés sous le pied des piétons ou par des véhicules;
- NE PAS déplacer au bulldozer de l'amiante-ciment pour former des tas;
• NE PAS balayer les débris d’amianté-ciment;
• évacuer et éliminer les déchets et les débris d’amianté ciment en tant que déchets contaminés par l’amianté.

Les gros blocs d’amianté-ciment doivent être évacués en entier et sans les casser ou les séparer. Ils doivent être placés dans une benne recouverte ou dans un camion recouvert, ou ils doivent être enveloppés dans des feuilles de polyéthylène avant leur évacuation.

Les petits débris ou les dépôts de poussière doivent être nettoyés avec un aspirateur type H classification amianté. Les débris de taille trop importante que pour être aspirés doivent être collectés et ensachés en tant que déchets contenant de l’amianté.

Procédures pratiques

- délimiter la zone de travail et assurer la sécurité des autres personnes;
- planifier le travail pour réduire ou éviter la perturbation des matériaux contenant de l’amianté;
- recouvrir les surfaces par des feuilles de polyéthylène d’épaisseur 125 μm [jauge 500] ou 250 μm (devant être évacuées et éliminées après le travail en tant que déchets pouvant être contaminés par l’amianté);
- exécuter le travail en limitant le nombre des travailleurs présents;
- appliquer des méthodes réduisant la libération de fibres d’amianté dans l’air (par exemple aspiration des surfaces, pulvérisation d’eau);
- utiliser des appareils de protection respiratoire classifiés pour l’amianté (par exemple EN 149 FFP3);
- ne pas casser des matériaux contenant de l’amianté;
- éviter de travailler sur des matériaux contenant de l’amianté se trouvant juste au-dessus de vous;
- utiliser un aspirateur classification amianté (type H) et uniquement des méthodes de suppression de poussière pour le nettoyage, telles que des chiffons mouillés, des tissus adhésifs (sur lesquels la poussière adhère). Ne PAS procéder à un balayage et ne PAS utiliser de l’air comprimé pour le nettoyage;
- Enlever les vis ou les clous avec précaution, en supprimant le dégagement de poussière par l’une des méthodes suivantes:
 - pâte épaisse (pâte pour papier peint) pour enduire la vis ou le clou avant de l’enlever; ou
 - aspiration locale installée au-dessus de la vis, et raccordée à un aspirateur classification amianté (aspirateur Type H);
 - ensuite, traiter les vis ou les clous enlevés comme des déchets contaminés par de la poussière d’amianté.
- Enlever intactes les dalles ou les panneaux contenant de l’amianté et éviter de les casser ou de les endommager.
- Placer soigneusement les matériaux contenant de l’amianté dans des sacs en plastique étiquetés directement (en ne laissant pas des déchets non-enveloppés s’accumuler).
- Ne remplir que partiellement les sacs de déchets, pour pouvoir les fermer facilement et correctement.
- Au moment de la fermeture des sacs, éviter que de l’air ne soit éjecté du sac, car cet air peut transporter des poussières et de l’amianté, mais le fermer avec soin et placer le sac fermé et étiqueté dans un sac extérieur en plastique résistant et transparent.
- Pour les déchets de grandes dimensions, ne tenant pas dans les sacs (par exemple panneaux isolants d’amianté complets), les conserver intacts et les envelopper dans deux couches de
polyéthylène avec une étiquette amiantée clairement visible (par exemple étiquette fixée solidement à l'intérieur de la couche extérieure de plastique transparent).

- Réduire le risque de dispersion de la contamination, en utilisant toujours le même itinéraire prédéfini et en procédant avec précaution pour ne pas endommager accidentellement les sacs pendant le transport depuis la zone de travail vers un centre de stockage sécurisé de déchets.
- Placer les déchets de matériaux contenant de l'amiante ensachés ou enveloppés dans un stockage sécurisé (par exemple une benne verrouillable) avant de les évacuer de la zone de chantier.
- Lavez-vous complètement chaque fois que vous quittez la zone de travail.
- A la fin du travail, nettoyez la zone de travail pour qu'elle soit à nouveau propre (en utilisant un aspirateur type H et/ou du papier toilette humide pour le nettoyage). Évacuez et éliminez les papiers toilettes usagés en tant que déchets contaminés par l'amiante.
- Enfin, respectez les procédures d'hygiène pour enlever les équipements de protection personnels et les appareils de protection respiratoire afin de ne pas vous exposer vous-même ou d'autres personnes à de l'amiante pouvant se trouver sur vos combinaisons. Utilisez des combinaisons jetables qui devront être évacuées et éliminées en tant que déchets contaminés par l'amiante après utilisation, ou utilisez des combinaisons lavables pouvant être lavées sous une douche avant de les enlever. On doit utiliser un aspirateur type H pour enlever les poussières sur les combinaisons; vous pouvez vous entraider avec vos collègues pour nettoyer vos combinaisons respectives, et ainsi vous pourrez nettoyer le dos de la combinaison.
- Gardez vos appareils de protection respiratoire en place jusqu'à la dernière opération.
- lavage des souliers;
- enlèvement des combinaisons, enroulement des combinaisons jetables de l'intérieur vers l'extérieur pour ne pas laisser échapper les poussières résiduelles;
- essuyez (avec une serviette humide) la surface extérieure de votre appareil de protection respiratoire;
- rincez-vous et lavez-vous (à la douche si possible) et ensuite seulement, enlevez l'équipement de protection individuel et l'appareil respiratoire;
- ne ramenez PAS chez vous vos vêtements de travail, ils doivent être jetés s'il s'agit de combinaisons jetables ou lavés dans une blanchisserie spécialisée en tant que vêtements contaminés par l'amiante.

Retrait de carreaux de sol en vinyle

Enlèvement des dalles

Les différentes techniques connues sont :

- la dépose à la spatule à l'humide (solution contenant un agent tensio-actif),
- la dépose par réchauffage des dalles pour ramollir la colle bitumeuse,
- la dépose à sec ou à l'humide à la lame vibrante,
- la dépose à sec à la spatule.

Le retrait des éléments en vinyle-amianté, par grattage à sec à la spatule, aboutit généralement à un fractionnement important, qui se traduit par un empoussièrement dans l’ambiance du local pouvant dépasser la valeur limite d’exposition professionnelle.

Deux techniques alternatives permettent de réduire les émissions de poussières lors de la dépose des revêtements : l’humidification avec de l’eau additionnée d’un savon liquide, ou encore avec un
produit mouillant spécifique (pas de fixateur) et le réchauffage au décapeur thermique, qui permet de ramollir la colle et de réduire le degré de fractionnement du matériau plastique.

Des machines, qui réchauffent les dalles et captent les poussières, sont bien adaptées à ces travaux de retrait concernant des surfaces importantes, d'accès facile et dépouvrues d'obstacles.

Mode opératoire et mesures de prévention

Les mesures de prévention suivantes doivent être mises en œuvre :

- baliser la zone de travail et interdire l’accès aux tiers,
- vider la pièce ou le local de tout son mobilier ; tout objet ou équipement difficilement décontaminable (radiateurs, textiles muraux, etc.) est enveloppé d’un film en matière plastique,
- arrêter et consigner les systèmes mécaniques d’échange d’air et maintenir les fenêtres en position fermée pour éviter les courants d’air pendant toute la durée du chantier,
- isoler le chantier des autres locaux (couloir, cage d’escalier, partie de local) et obstruer les grilles d’aération et les portes par des films tendus en matière plastique, joints aux supports de manière étanche à l’air sur la totalité de leur pourtour et résistants,
- assurer mécaniquement le renouvellement de l’air ou aménager un seul accès à la zone,
- équiper les intervenants d’une combinaison a usage unique a capuche de type 5, de gants lavables et d’un appareil de protection respiratoire a ventilation assistée (masque avec filtre FFP3), plus confortables qu’un appareil filtrant a ventilation libre,
- décoller les dalles en les réchauffant ou en les humidifiant et enfermer les déchets dans des sacs en matière plastique étanches au fur et à mesure de leur production,
- en fin d’opération, procéder a un nettoyage soigne de toutes les surfaces (sols et murs) à l’aide d’un aspirateur équipe de filtre THE ou a l’humide, avant de procéder au repli du chantier,
- avant la sortie de la zone, mouiller la combinaison et le masque puis retirer la combinaison avant le masque,
- prendre ensuite une douche d’hygiène sur le chantier,
- les déchets de matériaux de revêtement de sols en vinyle-amiante sont achemines vers une installation de stockage de déchets non dangereux (classe 2), après conditionnement dans un deuxième emballage.

Retrait de matériau contenant de l’amiante (MCA) friables

(Joints d’amiante, isolation (textile) d’amiante)

On entnd par matériaux friables les matériaux ou les produits susceptibles de libérer des fibres d’amiante sous l’effet de chocs, de vibrations ou de mouvements d’air.

Peuvent être considérés comme friables, les :

- flocages,
- calorifugeages,
- bourrures d’amiante en vrac,
- cartons d’amiante,
- tresses, bourrelets et textiles en amianté,
- enduits et mortiers de faible densité (inférieure à 1),
- feutres d’amiante,
- filtres à air, à gaz et à liquides,
Enceintes pour les travaux de retrait d’amiante

Une enceinte de confinement a pour but de prévenir la dispersion de la contamination par l'amiante et de prévenir l'exposition des autres personnes. En contrôlant l'accès via les sas et en décontaminant le personnel et les équipements lorsqu'ils sortent de l'enceinte, la contamination par l'amiante sera limitée à la zone à l'intérieur de l'enceinte.

Avant de mettre en place une enceinte de confinement, le chantier doit être préparé en prenant des précautions appropriées (qui doivent avoir été spécifiées dans l'évaluation des risques pour assurer la protection contre l'exposition à l'amiante; il s'agit par exemple des vêtements de protection personnels, des appareils de protection respiratoires et d'aspirateurs agréés pour utilisation avec de l'amiante (aspirateurs type H). En effet, des matériaux contenant de l'amiante peuvent être perturbés au cours de la mise en place de l'enceinte ou de la mise en place des équipements d'accès (par exemple échafaudage).

Une enceinte de confinement peut utiliser la structure du bâtiment ou peut être une structure temporaire complètement autonome. Les surfaces existantes doivent être lisses et imperméables, sinon elles doivent être recouvertes par des feuilles de polyéthylène. Une enceinte est généralement constituée à l'aide de feuilles de polyéthylène résistantes (épaisseur 250 μm) qui devront être éliminées en tant que déchets contaminés par l'amiante à la fin des travaux. L'enceinte devra présenter les caractéristiques suivantes:

- revêtement de sol imperméable lisse pouvant être nettoyé;
- un sas pour que le personnel entre dans l’enceinte et en sorte;
- un sas séparé (appelé parfois "bag lock") pour faire passer correctement les déchets confinés (en sac ou enveloppés) en dehors de l'enceinte;
- ventilateur d'extraction (appelé groupe de dépression), avec un filtre très efficace, pouvant générer une légère dépression à l'intérieur de l'enceinte et pouvant assurer un débit constant d'air frais à travers l’enceinte;

Seul le personnel, portant un équipement de protection individuel et un appareil de protection respiratoire approprié sera autorisé à pénétrer dans l'enceinte.

Il doit y avoir des panneaux d'avertissement signalant le danger d'exposition à l'amiante, indiquant l'accès restreint et l'obligation d'utiliser un équipement de protection. Ces panneaux d'avertissement devront être conformes aux réglementations nationales.

Unité de décontamination

Il est essentiel d'utiliser correctement l'unité de décontamination pour prévenir le risque d'exposition. L'unité de décontamination comprend essentiellement "une pièce de changements des vêtements propres" (souvent appelée extrémité propre) séparée par une porte à fermeture automatique d'une douche qui est reliée elle-même par une autre porte à fermeture automatique à une "pièce de changement des vêtements sales" (extrémité sale). Le personnel quitte ses habits de ville à "l'extrémité propre", et endosse les appareils respiratoires et les combinaisons propres avant de traverser le compartiment douche pour aller à l'extrémité sale. Si possible, "l'extrémité sale" doit se raccorder directement à l'enceinte via des sas.

Principes de techniques de suppression de poussière

Pour retirer des matériaux contenant de l'amiante, on doit utiliser les techniques de suppression de poussière pour empêcher les fibres d'amiante de passer en suspension dans l'air (Dépose au mouillé).

Les matériaux contenant de l'amiante peuvent être mouillés par pulvérisation pneumatique d'eau. Un agent mouillant doit être ajouté à l'eau pour mouiller efficacement l'amiante. L'injection sans air (injection n'utilisant pas d'air ni de gaz pour pulvériser l'eau) peut servir à mouiller la surface des matériaux poreux (par exemple une couverture isolante, des cordages, des garnitures).
Procédures pratiques

Les matériaux contenant de l’amiante mouillés correctement ont la consistance d’une pâte, et sont prêts à être retirés.

Le retrait de matériaux mouillés contenant de l’amiante se fait plus facilement avec des outils manuels (par exemple grattoirs, mandrins, tournevis). Les outils électriques (découpeuses à disques et ponceuses) ne doivent jamais être utilisés pour découper des matériaux contenant de l’amiante. Le travail doit être organisé de manière méthodique, les matériaux retirés étant immédiatement mis dans un sac ou enveloppés, en procédant progressivement du haut vers le bas pour ne pas recontaminer les surfaces nettoyées (par exemple on commencera par les plafonds et les poutrelles, on continuera par les murs et les parois, et on terminera par le sol).

Une fois que la plus grande partie des matériaux contenant de l’amiante a été enlevée, il peut rester de petites quantités sur les surfaces, parfois les matériaux résiduels contenant de l’amiante adhèrent fortement (par exemple sur la surface d’un tuyau piqueté). On devra utiliser de préférence des outils à main pour enlever l’amiante résiduel, mais des outils électriques peuvent être nécessaires pour l’amianté résiduelle adhérant fortement. Dans ce cas, les outils électriques doivent être utilisés avec leur puissance minimum et avec un équipement de suppression de poussière (mousse, pulvérisation sans air, ou aspiration locale).

Nettoyage final

Au cours du travail, tous les équipements et toute la zone de travail doivent être maintenus propres, les déchets contenant de l’amiante étant ensachés à mesure qu’ils sont produits.

Les débris doivent être mouillés avant d’être recueillis. On peut utiliser des pelles et des râteaux pour les débris en morceaux (les brosses ne conviennent pas). On peut utiliser des tissus ou des chiffons mouillés pour nettoyer les surfaces, l’eau de lavage devant être régulièrement remplacée pour éviter la contamination transversale des surfaces. Si les surfaces ont été essuyées avec un chiffon humide, on doit les laisser sécher avant l’inspection finale.

Après avoir retiré tout l’amiante et une fois que les déchets d’amiante et que tous les outils et équipements ont été évacués de l’enceinte, la zone faisant partie de l’enceinte doit être nettoyée. On doit utiliser un aspirateur type H pour commencer à nettoyer les surfaces, et ensuite on doit utiliser des chiffons ou des tissus humides.

Les feuilles ou les plaques utilisées pour recouvrir l’installation, l’équipement, les sols ou les autres surfaces, peuvent être enlevés et jetés. On doit pulvériser un produit fixateur sur ces feuilles et plaques (mais uniquement sur ces feuilles et plaques) pour empêcher la poussière d’être libérée pendant leur déplacement.

Tous les équipements utilisés pour le retrait de l’amiante doivent être nettoyés avant d’être évacués de l’enceinte. Chaque fois que cela est possible, les équipements tels que les panneaux d'échafaudage des plateformes d'éléveurs auront été protégés (par exemple avec de minces plaques ou des feuilles de polyéthylène devant être jetées après utilisation) avant d'avoir été introduits dans l'enceinte. On peut pulvériser un produit fixateur sur de telles plaques et feuilles et on peut les évacuer ensuite en tant que déchets contaminés par l’amiante.

Les surfaces qui n’ont pas été complètement protégées doivent être nettoyées avec un aspirateur type H et de l’eau propre. L’eau contaminée doit être éliminée par un circuit de filtration d’eau.

Gestion des conduites en AC et des déchets générés

Dans le cas des conduites en amianté ciment, surtout chez les gros consommateurs d’amiante (SONEDE, ONAS et les CRDA), il est recommandé la mise en décharge in situ (au niveau de chaque parc ou district) des déchets en provenance des stocks actuels en amianté ciment et les déchets générés par les opérations d’entretien et de maintenance des réseaux exploités.
Pour le futur il est recommandé la solution la moins couteuse et la plus respectueuse de l'environnement, soit laisser en place le réseau en amiante (enterré) et mettre à côté les nouvelles conduites propres. Ainsi que l'utilisation des stocks en bon état suite à leur entretien par le bagidonnage et la couverture.

La gestion de ces produits amiants passe par plusieurs étapes :

- Etude de dépollution (par parc)
- Humidification des stocks et des débris
- Tri et sélection des pièces à utiliser ultérieurement
- Bagidonnage des conduites en bon état
- Couverture des stocks utilisable par un plastique épais et étanche
- Evacuation des débris vers la zone rouge (à côté de la cellule d’enfouissement) et Ecrasement toute en respectant les mesures de protection des travailleurs
- Aménagement d’une cellule d’enfouissement de 50 à 100 m² par parc
- Enfouissement des déchets dans la cellule d’enfouissement
- Couverture et végétation des lieux d’enfouissement
- suivi de la qualité de l’air en matière de présence des fibres d’amiantes
- réutilisation de la surface d’enfouissement

XI. METHODE DE GESTION ECOLOGIQUE RATIONNELLE DES DECHETS DE L’AMIANTE

Conditionnement et emballage

L’entreprise qui est à la charge du retrait des MCA (Matériau contenant de l’amiante), doit prendre toutes mesures pour conditionner et évacuer de la zone de travail les déchets, au fur et a mesure de leur production.

Les déchets sont conditionnés conformément aux règlements en vigueur (TMD, etc.) et aux règles imposées par les cahiers des charges des centres d’élimination des déchets de MCA. Le type de conditionnement sera adapté à la nature des déchets du chantier : amianté libre, amiantè liée, produits palettisables, EPI, films en matière plastique, etc.

Les conditionnements doivent posséder des caractéristiques propres à éviter toute dispersion de fibres d’amiante (résistance à la déchirure, étanchéité, décontamination) et à permettre leur manutention à toutes les étapes de la chaîne d’élimination.

Pour les déchets d’amiante, impose le principe du double emballage. Ces déchets contenant de l’amiante sont soumis par ailleurs aux règlements du transport des matières dangereuses, en particulier concernant leurs emballages extérieurs pour le transport, qui peuvent être, selon la filière d’élimination :

- des grands récipients pour le vrac (GRV),
- des futs en acier, en aluminium ou matière plastique, et qui doivent porter le marquage requis par ces règlements.

Les produits d’amiante liée (amiante ciment ou autre) sont conditionnés par colis de taille adaptée :

- grands récipients pour le vrac (GRV ou «big-bag») pour y déposer des déchets conditionnés en sacs en plastique ou des déchets, fragments, petits éléments de diverses natures ne présentant pas de risques de perçement de leurs enveloppes;
o palettes ou caisses à claires-voies pour les produits « plats » entiers en amiante-ciment. Les dimensions des palettes sont supérieures à celles des produits, afin de réduire les risques de déchirement du film en matière plastique emballant chaque paquet, par chocs ou frottements, pendant le transport et les phases de chargement pour faciliter les opérations de manipulations des colis;

o racks ou caisses à claires-voies pour les produits tubulaires en amiante-ciment;

o caisses ou cartons de forte épaisseur placés sur une palette pour ranger des déchets d’amiante liée emballées dans du film plastique, telles que les dalles entières en vinyle-amianté ou sans amiante mais polluées par de la colle contenant de l’amiante

Grand récipient pour vrac (GRV) pour emballage et transport des déchets d’amiante

Lot de plaques emballées, chargées sur une palette en bois

Identification des colis

Sur chaque conditionnement unitaire de déchets contenant de l’amiante, il doit être apposé une étiquette qui attire clairement l’attention sur le fait que l'emballage contient de l’amiante, donc d’un produit dangereux. Pour les CEE le modèle d'étiquetage est donné dans la figure suivante.

Etiquetage réglementaire CEE pour les produits contenant de l’amiante

Manutention des déchets

Les conditions de manutention des déchets d’amianté emballés (en sacs, GRV, fûts, conteneurs, etc.), doivent être programmées et organisées de manière à réduire les risques lors de leur manipulation aux différents stades de la filière d’élimination et, en particulier, ceux liés:

- à la manutention durant toutes les étapes du transport et de la procédure d’élimination
- à la libération de fibres d’amianté suite à une déchirure éventuelle de l’emballage

Des moyens d’aide à la manutention, comme les chariots manuels ou motorisés, conteneurs à roues, etc. et les systèmes de levage adaptés seront utilisés. Le déchargement par benne est strictement interdit.

Transport

Pour la Communauté Européenne, les déchets de matériaux contenant de l’amianté sont classés comme déchets (ou matières) dangereux de classe 9 «matières et objets dangereux divers» par le règlement ADR (Accord Européen Relatif au Transport International des Marchandises Dangereuses par la Route).

Dans le cas du transport de déchets d’amiante libre, les prescriptions réglementaires concernant le transport des matières dangereuses s’appliquent dans leur totalité, notamment en ce qui concerne:

- l’engin de transport doit respecter la conformité à l’ADR
- le conditionnement des déchets doit être respecté (emballage, étiquetage, etc.)
- l’information et la formation de base des conducteurs de véhicules de transport
- la formation doit être dispensée à tout le personnel intervenant dans le transport des marchandises dangereuses (emballer, charger, service achat, logistique...), selon ses responsabilités et son domaine d’activité,

Les documents d’information doivent se trouver à bord du véhicule:

- une attestation de formation ADR en cours de validité du conducteur doit en toutes conditions être présentée,
- les consignes de sécurité doivent être conformes à l’article 5.4.3 de l’ADR,
- un récépissé de déclaration d’activité de transport de déchets dangereux, est exigé,
- un document de transport de marchandises dangereuses est exigé
- nombre de conditionnements chargés, masse brute réelle remise au transport,
- les équipements de protection requis par membre d’équipage
- les équipements de secours du véhicule (prévues dans les consignes de sécurité)
- le signalé du véhicule par deux panneaux vierges orange fixés à l’avant et à l’arrière du véhicule
- etc.

Les déchets d’amianté lié peuvent être exemptés de l’ADR selon la disposition 168, et donc de toutes les dispositions décrites ci-dessus, à condition qu’ils soient emballés de façon étanche. Pour éviter la libération de fibres pendant les différentes phases du transport, suite à des chocs ou frottements.
entre colis (chargement, transport, déchargement), les colis doivent être calés et arrimés dans des bennes fermées ou des véhicules couverts ou bâchés (il est toujours strictement interdit de décharger par benne).

Elimination des déchets

Il existe plusieurs techniques pour l’élimination des déchets amiantés :

- **Une élimination en décharge in situ**

Il s’agit d’étudier, d’autoriser et de construire une décharge des déchets d’amianté surtout sur les sites qui en sont bien menés. Nous recommandons néanmoins, comme explicité plus haut que cette décharge soit non apparente, dès qu’elle est bien identifiée, restant sous la responsabilité du propriétaire du terrain. L’espace de la décharge peut dans ce cas être valorisé, donc défalqué des frais de la construction de cette décharge.

- **Une élimination en décharge ex-situ,**

Elle est possible, mais elle engage en plus des frais de transport, un regroupement des déchets d’amianté provenant de plusieurs sites. De plus elle devrait être spécialisée amianté. Avec ou sans stabilisation, le déchet est enterré dans cette décharge qui prend la forme d’un Centre d’Enfouissement de déchets dangereux gardé.

En Europe, d’anciennes carrières de mines (métalliques, sels, substances utiles) ont été utilisées comme décharges de produits dangereux. Néanmoins, le cas est trop mal adapté pour la Tunisie.

- **La vitrification**

En outre, en dehors des sites d’enfouissement, il existe actuellement en Europe d’autres options thermiques pour détruire l’amianté en permanence en le transformant en un simple verre (vitrification) par l’emploi de torches à plasma puissantes, pour en débarrasser l’environnement, et récupération du verre pour élimination dans une décharge non contrôlée, économie oblige. Selon les données, les processus thermiques nécessitent une chaleur élevée et une haute énergie pour détruire l’amianté qui est de fait un minéral hautement réfractaire. Les températures de vitrification se situent dans la marge 1500-2000°C. Le processus de vitrification est donc hautement énergivore et est hors marge économique pour la Tunisie.

Dans ce cas, l’amianté est introduit dans l’unité thermique pour un temps de séjour nécessaire. Ensuite, le produit de transformation doit être refroidi avant d’effectuer un test. Si à la lumière de ce test, le produit final (verre) est exempt d’amianté sous examen par microscopie électronique à transmission, l’opération est réussie, mais s’il s’avère qu’il en contient toujours, le produit final déjà obtenu doit être recyclé dans la torche. Les températures élevées ont besoin de fortes quantités d’électricité, à un coût de plus en plus élevé, avec des coûts de maintenance élevés sur le réfractaire faisant paroi de four de brique intérieure. En outre, l’unité thermique doit avoir un système de lavage complet et efficace qui empêche l’échappement de sous-produits potentiellement nocifs (par exemple : dioxines, furannes et oxydes d’azote).

Dans le cadre de cette étude et en tenant compte des caractéristiques particulières des déchets d’amianté en Tunisie (principalement en amiante-ciment), le terrain et les caractéristiques géographiques générales du Pays, l’option d’enfouissement des déchets s’avère comme la solution technico-économique optimale de choix.

Les déchets de matériaux contenant de l’amianté sont éliminés dans installations de stockage de déchets, en alvéoles dédiées amianté : Produit dangereux (classe 1) : pour tous les déchets d’amianté brut ou ceux pollués par de l’amianté. Ce type d’installation est le seul habilité à recevoir des déchets de MCA friables, les poussières et les déchets contenant de l’amianté libre comme les EPI, les films plastiques et les matériaux d’encapsulation non dépollués, les filtres, les brisures de MCA non friables, les dalles vinyte amianté, etc. et l’amianté liée à des matériaux qui, lorsqu’ils deviennent des déchets
sont classés « déchets dangereux ». L’amiante mélangée à des produits chimiques, y est généralement refusé.

XII. METHODE DE DIAGNOSTIC ET MODALITES D’EVALUATION DE L’ETAT DES PRODUITS, DES BATIMENTS ET DECHETS AMIANTES

Méthodologie d’évaluation du risque

Tous les matériaux amiantés identifiés dans les bâtiments sont introduits dans un système de notation prioritaire pour l’évaluation des risques. Ce système permettra au client de planifier toutes les mesures d’élimination et de correction.

La mise en œuvre du système permettra:

- le maintien d’un environnement de travail sécurisé en considérant tous les matériaux amiantés identifiés,
- une mise en conformité avec la législation européenne en matière de sécurité et d’hygiène.

Une cote de priorité est attribuée à chaque élément amianté identifié sur les sites contrôlés. Cette cotation est basée sur une évaluation combinée de l’état, de la friabilité et de la localisation de l’élément amianté. De manière analytique, chaque matériau amianté est classé comme suit:

Evaluation du risque des matériaux

| Nature du produit | 1 | Composites renforcés en amiante (ou débris de produits) : plastics, résines, mastics, feutres pour toiture, carreaux de sol en vinyle, peintures semi-rigides, finitions décoratives, ciment amianté, etc.
| | 2 | Panneaux isolants amiantés, panneaux d’usine, autres panneaux d’isolation de faible densité, textiles amiantés, joints d’étanchéité, cordes et tissus en textile amianté, papier amianté
| | 3 | Isolation thermique (ex. conduite et chaude rière calorifique), flocages d’amiante (projection d’amiante), amiante en vrac, matelas d’amiante, emballage amianté
| Etendue des dommages/ détérioration | 0 | Bon état: absence de dommages visibles
| | 1 | Dégât faible: quelques égratignures ou marques en surface, planches ou carreaux avec bords cassés, etc.
| | 2 | Dégât moyen: rupture importante de matériaux ou plusieurs petites zones comportant des matériaux endommagé révélant des fibres d’amiante en vrac
| | 3 | Dommage important ou délaminage de matériaux, flocage et isolation thermique, résidus d’amiante visible
| Traitement de surface | 0 | Matériaux composites comportant de l’amiante : plastics renforcés, résines, carreaux de vinyle
Outils d’évaluation du risque matériaux

Les risques liés à la présence de matériaux contenant de l’amiante dans les lieux inspectés, sont classés comme précisé dans le tableau suivant.

<table>
<thead>
<tr>
<th>CATEGORIE DE RISQUE</th>
<th>DESCRIPTION</th>
<th>SCORE ATTRIBUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Élevé</td>
<td>Urgence des travaux d’intervention</td>
<td>10 -12</td>
</tr>
<tr>
<td></td>
<td>Procédé au retrait immédiat / encapsulation et ou à des travaux de décontamination en adoptant les conditions de travail appropriés de l’amiante à la nature et aux dangers du produit</td>
<td></td>
</tr>
<tr>
<td>Moyen</td>
<td>Mettre en œuvre un plan de gestion approprié</td>
<td>7-9</td>
</tr>
<tr>
<td></td>
<td>En raison de la probabilité de dommages ou de détérioration du matériel contenant de l’amiante, projeter et organiser l’enlèvement futur ou l’encapsulation par ordre de priorité en adoptant les procédures et conditions de travail de l’amiante les plus appropriées.</td>
<td></td>
</tr>
<tr>
<td>Faible</td>
<td>Mettre en œuvre un plan de gestion: appropriée</td>
<td>5-6</td>
</tr>
<tr>
<td></td>
<td>Mettre en place des signaux ou des étiquettes attirant l’attention sur la présence d’amiante quand c’est possible, avec la mention entretenir avec soin et en conséquence, ne pas déranger ou détruire.</td>
<td></td>
</tr>
<tr>
<td>Très faible et mineur</td>
<td>Mettre en œuvre un plan de gestion: appropriée</td>
<td>4 ou moins</td>
</tr>
<tr>
<td></td>
<td>Mettre en place des signaux ou des étiquettes attirant l’attention sur la présence d’amiante quand c’est possible, avec la mention entretenir avec soin et en conséquence, ne pas déranger ou détruire.</td>
<td></td>
</tr>
</tbody>
</table>

Catégorie du risque évalué

- Risque élevé : Urgence des travaux d’intervention
- Risque moyen : Urgence des travaux d’intervention
- Risque faible, très faible et mineur : Urgence des travaux d’intervention
- Risque absent : pas d’amiante détectée

XIII. CONCLUSION

Le plan d’action de désamiantage ne pourra être mis en œuvre sans un programme de formation et de sensibilisation à l’amont. Ce programme devra être conduit à deux niveaux :

- Formation de spécialistes pour l’identification, les mesures et le contrôle des produits amiantés. Cette formation ne peut être assurée que par des organismes agréés.
- Formation pour les opérations d’enlèvement et de mise en décharge de l’amiante,

Cette formation englobera les volets suivants :

- Les mesures, les actions et les précautions à entreprendre lors de travail en milieu contenant des produits amiantés ou contaminé par l’amiante,
Les techniques de stabilisation et de sécurisation des produits amiantés sur place en cas de difficulté d’enlèvement,
Les techniques de désamiantage et de dépollution des sites contaminés par l’amiante,
La gestion des déchets d’amiante et leur substitution par des déchets non amiantés,

Là encore cette formation doit être assurée conjointement entre des organismes privés et un organisme relevant du Ministère chargé de l’environnement ou de la santé, sous le regard de la commission nationale de désamiantage.

Cette formation sera assurée :

- Au profit des personnels des entreprises à créer désireuses d’entreprendre l’activité de dépollution et de décontamination des sites à amianté ;
- Obligatoirement au profit des personnels des bureaux d’études désirant participer aux études rentrant dans le cadre de ce plan d’action ;
- Pour le personnel de la DHMPE (Direction de l’Hygiène des Milieux et de Protection de l’Environnement sous tutelle du Ministère de la santé publique), de l’ANGeD et de l’ANPE.
Methodology guide for Asbestos waste management

I. INTRODUCTION

This guide:

- Help to identify asbestos and asbestos-based products during use, maintenance and upkeep of facilities, equipment and buildings, and help to increase awareness of their presence;
- Describe good practice to remove asbestos (including removing dust, and using the protective equipment) and to treat products and wastes of asbestos;
- Promote use of equipment and protective clothing, taking into account human factors and morphological differences between individuals.

The main target groups are the employers, workers and inspectors

- For the employer, the guide provides information on the technical, organizational and health and safety protection of personnel, which are required to use.
- For the employee, the guide gives information about protection measures, focuses on key points that the worker should be trained and encouraged to participate in the improvement of working conditions to ensure the safety and health protection.
- For the inspector, the guide describes the key points that can be examined during an inspection visit.

This guide is an area of many applications because it presents information in three areas:

- Work can expose to asbestos unpredictably (during maintenance of buildings, where people can discover asbestos unexpectedly);
- Work in which exposure to asbestos fibers suspended in the air is planned (scheduled work);
- Work involving a very high risk of exposure to airborne asbestos in the air and should be performed by specialist.

II. DEFINITION AND OVERVIEW

Asbestos is a generic name given to a variety of fibrous of six natural minerals that have been used in commercial products. These minerals have a high tensile strength, high flexibility, a special resistance to chemical and thermal degradation, a high electrical resistance, and a certain capacity to be woven.

The asbestos minerals belong to two groups of natural silicates minerals from the alteration of igneous rocks such as serpentine: serpentine and amphibole. The dominant variety of serpentine asbestos is chrysotile (white asbestos), which represents most of the used asbestos since 1800. There is two types of asbestos

- The asbestos called hard: belongs to the family of hornblende: including hornblende itself, the amosite, anthophyllite, tremolite, crocidolite and actinolite. It is the variety of the most dangerous asbestos. By aging and weathering, friction and fine mechanical weathering, these minerals go on micrometric fibers and are raised completely in the air.
- The asbestos called soft: because they are suitable for spinning useful for some purposes (refractory rope factories, textile heat protection, gloves and thermal insulation aprons, belts mechanical transmission...). To this group belongs serpentine used for the manufacture of
brake linings, for the production of mechanical friction in general, for insulation ... but above chrysotile formed spectacularly long fibers and whose mechanical flexibility is very deceptive, highly suitable for spinning.

III. Description and identification of products containing asbestos

Asbestos succeeded for six successive decades, its intrusion and scattered in all equipment and infrastructure sectors:

- Sheet and plate, barns, walls, houses roofs or carports, false ceilings, ..., which is really difficult to determine the quantities and bills of quantities to across the country and sector;
- Pipes of various calibres in construction (storm drains, concrete columns coatings, drainage pipes, water supply service, drainage and irrigation pipes for agriculture, etc.);

The following table shows a list of products that may contain asbestos. The age of an item over 20 years is highly suspected to contain asbestos.

<table>
<thead>
<tr>
<th>Bulk raw asbestos: flocking, Insulation, Thermal and Acoustic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asbestos in powders, mineral products (except asbestos cement) Coatings, facade plaster, gypsum plasters, fire protection, Mortars adhesives, protective fire mortars, refractory mortars, moulding powder</td>
</tr>
<tr>
<td>Asbestos in liquids or pastes: Glues, Coatings, Sealants, Foams, Dough joint Paintings</td>
</tr>
<tr>
<td>Asbestos sheets and plates: Cards, Walls, Shells, False Ceilings, Leaves, Felt, Filters, panels, paper, plates</td>
</tr>
<tr>
<td>Woven or braided asbestos: Strips, Flanges, Cords, Blankets, Mattresses, gland, Curtains, Tapes, Fabrics, Braids, Clothing</td>
</tr>
<tr>
<td>Asbestos in a resin or plastic: Clutch, Brakes, Electrical Insulators, Gaskets, Composite materials, Plastic, Foams, nosing, wall coverings, flooring slabs or rolls</td>
</tr>
<tr>
<td>Asbestos cement: Tubs, cladding, pipes, wall, roof elements, sheath, plate, roof plates, Tablets, Pipes, ...</td>
</tr>
<tr>
<td>Asbestos in black products: bituminous shingles, bitumen, bituminous adhesives, corrosion protection coating (cars, wagons), sealing protective coating (locks, basins, channels ...), Roof Waterproofing, Sealants, Coatings Road</td>
</tr>
<tr>
<td>Asbestos in the materials and equipment: Boilers, Fire dampers, Ovens, Furnaces, doors, elevator doors, Radiators</td>
</tr>
</tbody>
</table>
The presence of asbestos in a product can only be confirmed by laboratory analysis. However, there are ways to suspect the presence of asbestos in a product or in a place such as the finding of a micro-textured hair at the ends of a piece and with a fire resistance (use a lighter, for example).

<table>
<thead>
<tr>
<th>Sheet and plate</th>
<th>Storm/rain drains</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flower container</td>
<td>Drainage and irrigation pipes</td>
</tr>
<tr>
<td>Protective textile</td>
<td>Break pad</td>
</tr>
<tr>
<td>Asbestos in textile</td>
<td>Protective gain of electronic cable</td>
</tr>
</tbody>
</table>
IV. Use of asbestos in Tunisia, products and places asbestos

Tunisia is not producer of asbestos; it imported continuously its total needs in material and exported partially asbestos products. Countries which provided asbestos for Tunisia are mainly Russia, Canada and Zimbabwe. The importation of pure asbestos powder or flakes, was since 2002, with the conversion of the plant in Jebel Jeloud (SICOAC) in 1998, and CIAMIT Bizerte was closed in 2002. Only the El Mawassir factory continued use of asbestos until 2012.

Imported asbestos and asbestos-containing products, customs data

In addition to asbestos powder or flakes, Tunisia also several important asbestos based products, particularly asbestos cement products and friction material for machinery and vehicles. The nomenclature for asbestos and imported articles containing asbestos is as follows:

<table>
<thead>
<tr>
<th>NSH Code</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>2524</td>
<td>Asbestos fibers, flakes, powder and other asbestos</td>
</tr>
<tr>
<td>6811</td>
<td>Asbestos cement, cellulose fiber or similar products</td>
</tr>
<tr>
<td>6812</td>
<td>Asbestos fibers</td>
</tr>
<tr>
<td>6813</td>
<td>Friction linings (sheets, rolls, strips, segments discs, washers, pads), used for brakes, for clutches or all of friction, with a basis of asbestos or other mineral substances</td>
</tr>
</tbody>
</table>

Asbestos plants

- SICOAC, active from 1962 to 1997,
- CIAMIT, active from 1980 to 2002;
- El Mawassir, active from 1984 to 2012,

Infrastructure and consumers of asbestos-products

As such, SONEDE, ONAS and the Ministry of Agriculture and Water Resources (DBGTH, DGGR, CRDAs,...), have always been major users of asbestos products (sheet and pipes), and especially in the most serene manner until 2000-2005, when we realized that we and our future generation will face a real danger: Asbestos.

Other users of asbestos cement pipes, such as municipalities (storm water drainage network) and some components of the dams, with a relatively small amount compared to the major users listed above. Indeed, the quantity inventoried in our study is about 516 km of pipes.

Other sectors, other places and other products

Other sectors use the glass wool:

- For the vehicles fleet, considerable amounts of friction components (brake pads, clutch discs) contain 10 to 15% of asbestos were imported at least between 1960 and 2000, until that such products were forbidden (2000-2005) and therefore the substitution of asbestos by other non-hazardous products.
- For saving energy and insulation, asbestos has long been used for insulating heating ducts, or as an insulator in the field of refrigeration, for furnaces ...

Areas of buildings which may contain asbestos

Although the use of asbestos was banned, millions of cubic meters of asbestos-containing materials are still in place in existing buildings in Europe. This also means that it is futile to think that you can totally get rid of asbestos including in Western countries. Typically, these materials may be present in the following forms.

- Bulk:
- • Asbestos cardboard and paper for thermal insulation (fireplaces, furnaces, gas or electric heaters, radiators, etc.), joints and surface thermal protection;
 o Plates for fire protection, fire doors and partitions.

 - Tissues:
 - Wire cord or rope, caulking and insulating coating equipment (boiler door, heating, gas piping engine exhaust, etc.);
 - Strips of fabric for protection against heat;
 - Electrical insulating tape (electrical and ductwork);
 - Fire resistant, sound insulation or expansion joint seals on structures or partitions.

 - Asbestos cement products:
 - Sheets (sheets) flat or corrugated, tile, slate and other roofing panels;
 - Windowsills, facade cladding sheets;
 - And internal partition panels;
 - Other building boards or shelves, permanent forms;
 - Chimneys, ventilation ducts, downspouts, chutes; Water supply and drainage pipes;
 - Fire dampers and fire resistant panels;
 - Planters and garden items.

 - Incorporated in various binders (resins, bitumen, etc.):
 - Floor tiles (vinyl asbestos), linoleum;
 - Adhesives for various flooring;
 - Mastics (windows, etc.);
 - Textures coatings and paints;
 - Roof waterproofing bituminous felts, in rolls or sheets roofing asphalt pavements thermal insulation;
 - Waterproof seal, expansion joint, plumbing, engine, etc., seal closure and sealing;
 - Levelling and finishes for floors and interior walls,
 - Tile adhesive mortars, adhesives and waterproof coatings;
 - Coatings and gypsum mortars for fire protection;
 - Friction materials (brake pads for elevators, various engines and machines);
 - Components of the electrical insulation based resin.

The asbestos-containing materials may be encountered anywhere in a building. Plumbers, pipe fitters, heating engineers, electricians, roofers, false ceiling installers, paint workers, drywall artisans, hoisting engineers, etc. can all breathe asbestos dust at seemingly harmless operations.

V. Risks and effects of asbestos on health and the environment

Environmental exposure to asbestos and asbestos-containing products is defined as exposure to air pollution outside (external environment) and that of indoor air (ambient environment) by asbestos fibers.

Pollution of the external environment

 - Open pit waste storage site containing asbestos that lead to the release of fibers that can migrate away from the site.
- Urban and / or rural polluted: 1) during demolition operations or removal of installations containing asbestos; 2) in the storage area of environmental asbestos waste or of asbestos products manufacturing plant; 3) related to road traffic (brakes, clutch, wear of the road surface containing asbestos).

Pollution of the Indoor environment

- Passive para-occupational exposure or exposure "intramural" to asbestos in the air, either because of the deterioration of buildings that contain asbestos.
- Domestic exposure due to contact with work clothes or household goods containing asbestos (ironing board, insulation boards, toaster, portable heaters).
- Some activities such as change of brake linings, building a garden shed or change gaskets containing asbestos (kitchen ovens, ranges, fireplaces, etc.)

What are the diseases related to asbestos?

- Localized pleural fibrosis
- Asbestosis
- Diffuse malignant mesothelioma
- The lung cancer

The latency period between exposure to asbestos and these conditions is 20-40 years.

It is essential for anyone who has been in contact with asbestos, verify by auscultation if any of the following symptoms exist:

- Shortness of breath, wheezing or hoarseness;
- A persistent cough that worsens over time;
- Blood in the sputum (fluid) coughed up from the lungs;
- Pain or tightness in the chest;
- Difficulty swallowing;
- Swelling of the neck or face;
- Loss of appetite;
- Weight loss;
- Fatigue or anemia.

VI. Asbestos substitutes

Research and applications on an international scale, have already exceeded the time of the necessity of the use of asbestos in commercial building products and industry. Substitution products including a variety of materials are now widely commercially available, the most common are PVC and cellulose fibers, vegetable fibers, various metals, tiles, various glass fibers, etc., used to produce cement fiber for pipes, but also for coating materials, friction (pads and brake linings, clutches, etc.), refractories and insulation. So there is indeed a range of other products that can replace asbestos in its various traditional uses. The same country before producers and exporters of asbestos become today exporters of these alternative materials of asbestos and its products use and application.

Note also the conversion of two plants SICOAC and El Mawassir from the classic stage-based factories for decades on the use of asbestos, the stage of modern and clean factories producing compounds and pipes based on various alternative materials of asbestos. This conversion has gone virtually
unnoticed and especially without impact, other than probably positive, specifically the impact on the health and environment.

Force is to note the step by step conversion of public networks of pipes of asbestos cement, with equipment that are totally devoid, using asbestos substitutes. The efforts of former asbestos cement wholesale major users (SONEDE, CRDAs, etc.) to accomplish this conversion, were quick and led practically significant economic implications. Rather, the gains to health and the environment will surely prove none.

VII. National regulations related to asbestos waste management in Tunisia

Legislation in Tunisia has classified asbestos and waste produced as dangerous material, and there are texts for transportation and management until the landfill:

- Law No. 96-41 of 10 June 1996 on waste and control of their management and disposal;
- Decree 2000-2339 of 10 October 2000 establishing the list of hazardous waste. The asbestos and waste containing asbestos was classified as dangerous material, which should be managed specifically
- 97-37 Law of 2 June 1997 on the road transportation of hazardous materials;
- 2001-143 Decree of 5 January 2001 fixing the safety rules for loading, unloading and handling of dangerous goods in seaports trade;
- Order of the Ministers of Interior and Transport of 18 March 1999 fixing the safety record model on the transport of dangerous goods by road and instructions must have;
- Order of the Minister of Transport of 19 January 2000 laying down the danger labels and markings on the transport of dangerous material by road.
- Order of the Ministers of Interior of 19 May 2000 fixing the dangerous substances the carriage is subject to obtaining a roadmap.

The study of the Ministry of Environment in 2014 proposed a decree text for:

- The prohibition of asbestos in Tunisia
- Set a standard for exposure to asbestos in buildings in Tunisia
- The good practice guideline to follow during the removal of asbestos and management of products and waste container,
- The good practice guideline to use during work of remediation of contaminated sites.

VIII. Standards

Limits set standards for ambient air and exposure to asbestos

In compliance with the European legislation to protect workers (Directive 83/477 / EEC, as amended by Directive 2003/18 / EEC), employers must ensure that no staff or workers are not exposed to a concentration of asbestos in the area greater than 0.1 fiber per cm3 representing the weighted average of eight (8) hours of work (Article 8). These European Directives have been adopted by the laws of the Member States. The same limit is applied in the USA.

Thus, in compliance with the European legislation, asbestos fiber exposure limit in air is 0.1 fibers per cm3 (8h TWA: time weighted average).
In most member countries, the clean air limit is 0.010 fibers per cm³ (Great Britain HSG 248 & MDHS 39/4, Greece PD 212/2006, ...). The law requires that measurements should be made in polarized light / analyzed and using a phase contrast microscope. One Member Country requires concentrations should be less than 0.005 fibers per cm³ as a test to allow the re-occupation of a building, and must be measured by a scanning electron microscope (France, INRS ED815). In other Member Countries, measures of asbestos in the air for the cleanliness certification must be made by the Scanning Electron Microscope (Germany, Italy). In the US, the clean air limit (EPA safe occupancy level) is 0.01 fibers per cm³ (40 CFR 763.90 (i) (5) and 29 CFR 1926.110 (g)).

Generally, in agreement with the most common international practice, the limit considered for the cleanliness of the air is **0.010 fibers per cm³**.

IX. Asbestos waste

Significant quantities of asbestos have invested several sectors, including infrastructure and basic facilities in almost all governorates of the country. Based in a first approximation to the total amount of raw asbestos imported and processed in the three factories (SICOAC, CIAMIT and EL Mawassir in the period from 1962 to 2012, about 121,000 tons, and their declared production capacity Asbestos-cement, a total amount can be estimated (+ waste products) of around 1.12 million tonnes in AC. Most of that amount is:

- On the plant sites where asbestos cement waste classified as hazardous waste and have been the subject of a controlled landfill sites on both CIAMIT and SICOAC; A similar program has also been proposed for the plant in EL Mawassir and should be put in execution after the conversion of the plant in 2013;

- As national infrastructure networks of pipes and basic equipment (ONAS, SONEDE CRDAs), where stocks and asbestos cement pipes rebus exist on the same sites districts of these companies; thus a total length of 35,550 km (34,474 miles pipes installed 76.4 km of pipes for inventory network maintenance) AC lines.

- As elements forming an integral part of various buildings (pipes, corrugated sheet and plate roofs, shelter roofs, sheds, barns or ...), sometimes in public places highly frequented by the public (hospitals, schools, administrations, ...) as revealed by the investigations conducted in this study.

- The quantities that are used by private (cover plates in sheds and agricultural farms, insulation and flocking in clinics and hotel establishments, some buildings and private schools, the products sold in paint industries, sealing and mechanical parts).

To prevent the dangers of asbestos, and the tendency to the decision to banish its use in Tunisia like the neighbouring countries, especially those of the northern shore of the Mediterranean, we should take many steps for nowadays and the future.

X. Safety and security equipment for the handling of asbestos products and waste

Asbestos may be incorporated into a variety of materials. If the fibers can be released, the danger is particularly imminent by inhalation of airborne fibers. The microfibrils can be incorporated into the lungs and can remain there for a long time (years). This can cause a long illness, which can extend even decades after inhalation of asbestos.

If the asbestos fibers are loosely bound in the product or in the material, these being brittle depending on conditions, this can significantly increase the risk of release of fibers into the air. On the contrary if the fibers are held by a binder in a solid, non-friable, the fibers are released much less.
As an immediate solution for reducing concentrations of asbestos fibers in the air and therefore contamination, several proposals are suggested:

- The labelling of materials containing asbestos and direct information for occupants to prevent any interference or damage that may be caused to existing asbestos materials.
- The periodic inspection and regular maintenance of asbestos materials to prevent any work that may involve (strictly prohibit any work that may cause them to break and tear, releasing fibers into the atmosphere, sanding, rubbing, scratching, etc.). Especially the asbestos cement materials (corrugated sheets of asbestos cement, plate, fireplaces, ...) to the exclusion of their debris, should be periodically maintained (eg painting, restoration holes or cracks, etc.)
- For fragments of asbestos cement found in several places in the premises, their immediate removal is necessary.
- In the case of significant damage, renovations or handling work: for soil plastic tiles (containing asbestos), we can propose their elimination or their recovery by another material (eg. by the plastics material) and other materials (asbestos cement, seals, insulation, ...) of their total elimination.
- If removal of material containing asbestos, the work must be conducted by an experienced team and agreed contractual, and a staff that all statutory qualifications to be able to apply all the strict and necessary safety measures.

Before and during the removal work materials containing asbestos, the following general principles should be applied to reduce the exposure to asbestos fibers and fumes of this product in the air.

- determine the extent and location of materials containing asbestos;
- restrict access to the work area appropriately (eg tape, barrier or full enclosure);
- establish clear and sufficient warning signs (eg asbestos hazard, entry restricted to authorized personnel);
- enclose or protect surroundings (eg with leaves of resistant polyethylene), depending on the amount of work to avoid contamination by asbestos fibers suspended in the air;
- minimize the number of people allowed to access the area;
- use of appropriate respiratory protection and personal protective equipment (eg disposable overalls and washable boots);
- Apply appropriate techniques to limit the release of fibers (eg humidification, wet removal techniques, local exhaust fan, etc.);
- prevent damage to materials containing asbestos (eg remove and dispose of whole pieces, remove and wrap whole boards);
- put in a double bag or wrap and label (as asbestos) any waste that may contain asbestos prior to discharge;
- clean the work area completely
- protect the routes to prevent the spread of asbestos contamination;
- ensure secure containment (eg wrapped or bagged) and secure storage of asbestos waste (eg lockable skip)
- ensure secure transport to an approved waste disposal facility;
- eliminate waste containing asbestos only on licensed sites for disposal of asbestos (according to national regulations);

Protection of individuals handling asbestos
It is recommended to seek professional for handling asbestos materials. However, if the asbestos removal is carried out by the individual himself, it will be important to observe the following precautionary rules:

- Protect yourself with a combination that will be discarded after each use - a mask with a filter type FFP3 (disposable mask)
- Avoid dust emissions by
- Disassembly fasteners where possible
- The use of hand tools or low speed (high speed tools are not recommended)
- The handling of asbestos with caution (throwing items on the ground could break and issue dust)
- The local wetting of asbestos-containing materials (taking into account the electrical hazard)
- Cleaning the area polluted with an absolute filtration with vacuum (no brush)
- Storage of waste from the work in waterproof bags (including clothing and mask) "yourself and others by taking away unauthorized persons by work"

XI. Methods, conditions and procedures for asbestos removal

Removal of asbestos cement materials for non-friable

(Waste asbestos cement roofing sheets of asbestos cement, asbestos cement pipes)

Cover materials, including corrugated sheets, formed the majority of asbestos-cement products marketed until their ban.

Other asbestos cement products have been widely used in the building: cladding and coating products, bulk products or inner liner, pipes, ducts, composite elements glued, etc.

Most of these materials are supported on a carrier by hooks, lag screws, bolts, clamps or screws; sometimes they are sealed together (pipes) or masonry substrates.

These materials consist of a homogeneous mixture of cement and fiber, although strongly bonded, may release asbestos fibers is:

- by brutal mechanical damage (breakage, drilling)
• machining operation at high cutting speed (cutting)
• by falling and scattering of plants (lichens, mosses) dry who colonized and degraded the plate surfaces.

Unless technically impossible, removal of asbestos cement materials must be through deconstruction and must be accompanied by rules designed to protect operators and the environment against the risk of asbestos fibers inhalation.

For removal of asbestos cement materials (in demolition or renovation), the practice is method is:

✓ remove the asbestos cement prior to demolition;
✓ protect it from contamination other surfaces (for renovation);
✓ avoid breaking asbestos cement materials; remove the entire material;
✓ keep the material wet when working on it but do not use too much water, as this would create mud;
✓ if asbestos cement is off to a great height, lower the asbestos cement material onto a clean hard surface; use secure access methods for removing asbestos cement materials being at high locations;
✓ remove as soon as possible waste and debris containing asbestos that they are not crushed under the feet of pedestrians or vehicles;
✓ DO NOT bulldoze asbestos cement into piles;
✓ DO NOT sweep asbestos cement debris;
✓ evacuate and eliminate waste and asbestos cement debris as asbestos-contaminated waste.

Large asbestos cement blocks must be removed completely and without breaking or separating. They should be placed in a dumpster or covered in a covered truck, or they should be wrapped in polythene before disposal.

Small debris and dust deposits should be cleaned with a Type H vacuum cleaner asbestos classification. Debris are too large to be drawn that must be collected and bagged as waste containing asbestos.

Practical Workflows

- delineate the work area and the safety of others;
- plan the work to minimize or avoid the disturbance of asbestos-containing materials;
- cover surfaces with thickness of 125 microns polyethylene sheets [500 gauge] or 250 microns (to be removed and disposed of after work as waste may be contaminated with asbestos);
- perform the work by limiting the number of workers present;
- apply methods reducing the release of asbestos fibers in the air (eg vacuuming, water spray);
- use respirators rated for asbestos (eg EN 149 FFP3);
- not breaking the materials containing asbestos;
- avoid working on materials containing asbestos located just above you;
- Use asbestos rated vacuum cleaner (Type H) and only dust suppression methods for cleaning, such as wet wipes, tissue adhesives (on which dust adheres). Do NOT perform a scan and do NOT use compressed air for cleaning;
- Remove screws or nails carefully, suppressing dust release by one of the following methods:
 - thick paste (wall paper paste) to coat the screw or nail prior to removal; or
 - local exhaust ventilation fitting over the screw, and connecting to an asbestos rated vacuum cleaner (Type H vacuum cleaner);
- then treat the removed screws or nails as contaminated by asbestos dust.
- Remove undamaged tiles or panels containing asbestos and avoid breaking or damaging them.
- Carefully place the asbestos-containing materials in labeled plastic bags directly (by not letting unwrapped waste accumulate).
- Only partially fill waste bags, so that they close easily and properly.
- At the time of closing bags, avoid air is ejected from the bag, as that air might carry dust and asbestos, but close carefully and place the closed and labeled bag in an outer bag resistant plastic and transparent.
- For larger items, do not fit into bags (eg whole asbestos insulating board), keep intact and wrap them in two layers of polyethylene with an asbestos label clearly visible (eg label securely attached to the within the outer layer of transparent plastic).
- Reduce the risk of spread of contamination, always using the pre-defined route and proceeding with care to prevent accidental damage to bags during transport from the work area to a secure waste disposal facility.
- Place waste of materials containing asbestos bagged or wrapped in a secure storage (eg a lockable skip) prior to discharge from the construction area.
- Wash thoroughly whenever you leave the work area.

At the end of the work, clean the work area to make it clean again (using a Type H vacuum cleaner and / or wet paper toweling to clean). Drain and dispose of used toweling as asbestos contaminated waste.

Finally, follow the hygiene procedures in removing personal protective equipment and respiratory protection devices to avoid exposing yourself or others to asbestos that may be on your overalls. Use disposable overalls that are to be removed and disposed of as asbestos contaminated waste after use, or use washable overalls that can be washed under a shower before removal. One must use a Type H vacuum cleaner to remove dust on combinations; you can help each other with colleagues to clean your respective combinations, and so you can clean the back of the suit.

- Keep your respiratory protective equipment in place until the last operation.
- wash boots;
• remove overalls, rolling disposable overalls inside to the outside to prevent the escape of residual dust;
• wipe (with damp towel) the exterior of your respirator;
• rinse off and wash (showering if possible) and only then remove personal protective equipment and respiratory system;
• do NOT take your work clothes, they should be discarded if they are disposable coveralls or washed in a laundry as specialized clothing contaminated by asbestos.

Vinyl floor tile removal

Removal of tiles
The various known techniques are:
 o removal spatula wet (solution containing a surfactant)
 o removal by heating the tiles to soften the bituminous adhesive
 o removing dry or wet the reed,
 o dry deposited with a spatula.

The removal of vinyl-asbestos elements, dry scraping with a spatula, generally results in a significant fractionation, resulting in a dust in the atmosphere of the room that may exceed the value of occupational exposure limit.

Two alternative techniques reduce dust emissions during removal of coatings: moistening with water and a liquid soap, or with a specific wetting agent (no fixative) and warming the heat gun , which allows to soften the adhesive and reduce the degree of splitting of the plastic material.

Machines, which heat the stones and trap dust, are well suited to such removal work on large surfaces, easy to access and free of obstacles.

Procedure and preventive measures
The following preventive measures must be implemented:
 • mark the work area and deny access to others,
 • empty the room or premises of all its furniture; any object or difficult to decontaminate equipment (radiators, wall textiles, etc.) is covered with a plastic film,
 • stop and record the mechanical air exchange systems and keep the windows closed to prevent drafts for the duration of the project,
 • isolate the site from other rooms (hallway, stairwell of local) and block the air vents and doors with plastic film taut, tightly joined the media looks over the entire their perimeter and resistant
 • mechanically ensure the renewal of air
 • provide only one access to the area,
 • equip stakeholders a combination single use a hood type 5, washable gloves and a respirator has assisted ventilation (mask with FFP3 filter), more comfortable than a filter apparatus has free ventilation,
• off the pavement by heating or moistening and lock the waste in sealed plastic bags as they are produced,
• end of the operation, perform a clean heals all surfaces (floors and walls) with the help of a HEPA filter vacuum cleaner or a team moist, before the downturn of the site,
• before leaving the area, moisten the mix and the mask and remove the mask before the combination,
• then take a shower hygiene on site
• waste flooring materials vinyl-asbestos are channeled to a non-hazardous waste storage facility (class 2), bitter packaging in a second package.

Withdrawal of material containing asbestos (MCA) friable

(Asbestos gaskets, insulation (textile) asbestos)

It means friable materials or products that release asbestos fibers under the effect of impacts, vibration or air movement.

Can be considered friable them:

✓ flocking,
✓ lagging,
✓ asbestos fluff bulk
✓ asbestos cardboard,
✓ braids, beads and textile asbestos,
✓ plasters and mortars low density (less than 1),
✓ asbestos felts,
✓ air filters, gases and liquids,

Speakers for the asbestos removal work

An enclosure is designed to prevent the spread of asbestos contamination and prevent the exposure of other people. By controlling access via lock and decontaminating personnel and equipment when they leave the enclosure, the asbestos contamination will be limited to the confines of the area inside.

Before setting up a containment, the site must be prepared using appropriate precautions (which should have been specified in the risk assessment to protect against exposure to asbestos, it is by such as personal protective clothing, respirators and vacuum cleaners approved for use with asbestos (Type H vacuum cleaners). Indeed, asbestos-containing materials may be disturbed during the installation the enclosure or the establishment of access equipment (eg scaffolding).

An enclosure can use the building structure or may be a completely autonomous temporary structure. Existing surfaces must be smooth, waterproof, otherwise they should be covered with polyethylene sheets. An enclosure is generally constructed with resistant polyethylene film (thickness 250 microns) to be disposed of as asbestos-contaminated waste at the end of the work. The loudspeaker shall have the following characteristics:
- smooth impermeable floor that can be cleaned;
- an airlock for personnel to enter the enclosure and so;
- a separate air lock (sometimes called "bag lock") for passing properly confined waste (bagged or wrapped) outside of the enclosure;
- extraction fan (called negative pressure unit), with a very effective filter, to produce a slight negative pressure inside the enclosure and to provide a constant flow of fresh air through the enclosure;

Only personnel, wearing personal protective equipment and appropriate respiratory protective equipment will be allowed to enter the enclosure.

There must be warning signs indicating the danger of asbestos exposure, indicating restricted access and the requirement to use protective equipment. These warning signs should comply with national regulations.

Decontamination unit

It is essential to properly use the decontamination unit to prevent the risk of exposure. The decontamination unit consists essentially "a piece of clean changing" (often called clean end) separated by a self-closing door from a shower which is itself connected by another self-closing door to a "piece Change dirty clothes "(dirty end). Staff left his street clothes to "clean end" and don clean respirators and clean coveralls before moving through the shower compartment to the dirty end. If possible, the "dirty end" should connect directly to the enclosure via airlocks.

Principles of dust suppression techniques

In removing materials containing asbestos, you should use the dust suppression techniques to prevent asbestos fibers becoming airborne (Removal wet).

The asbestos-containing materials can be wetted by air water spray. A wetting agent should be added to the water to effectively wet the asbestos. Airless spray (injection does not use air or gas to propel the water) can be used to wet the surface of porous materials (eg an insulating blanket, ropes, gaskets).

Practical Workflows

The asbestos-containing materials were properly wet the consistency of a paste, and are ready to be removed.

The removal of wet materials containing asbestos is more easily with manual tools (eg scrapers, chisels, screwdrivers). Power tools (disc cutters and sanders) should never be used to cut materials containing asbestos. The work should be organized methodically, with removed material being immediately bagged or wrapped, proceeding gradually from top to bottom to avoid recontamination of cleaned surfaces (for example, start with the ceilings and beams will continue through the walls and the walls, and finally floor).

Once the bulk of the asbestos-containing material has been removed, there may be small amounts on surfaces, sometimes residual material containing asbestos adhere strongly (e.g. on the surface of a pipe staining). It should preferably use hand tools to remove the residual asbestos, but power tools may be necessary for some strongly adhering residual asbestos. In this case, power tools are to be used at the lowest power and with a dust suppression equipment (foam, airless spray or local exhaust).
Final cleaning

During the work, all equipment and the entire work area must be kept clean, waste containing asbestos being bagged as it is produced.

Debris should be wetted before being collected. Can be used shovels and rakes to pieces of debris (brushes are not suitable). Tissues or wet cloths can be used to clean surfaces, wash water must be regularly replaced to prevent cross contamination of surfaces. If the surfaces were wiped with a damp cloth should be left to dry before final inspection.

After removing all asbestos and once the asbestos waste and that all tools and equipment were evacuated from the chamber, the area part of the enclosure should be cleaned. One must use a Type H vacuum cleaner to start cleaning the surfaces, then we must use rags or wet tissues.

Sheets or plates used to cover the installation, equipment, floors or other surfaces, can be removed and discarded. Must be sprayed with sealant on such sheets and plates (but only on such sheets and plates) to prevent dust being released during their movement.

All equipment used for the removal of asbestos must be cleaned before being evacuated from the chamber. Wherever possible, equipment such as scaffold boards of lift platforms have been protected (eg with thin plates or polyethylene sheets to be discarded after use) before being introduced into enclosure. With sealant can be sprayed on such plates and sheets and then you can remove them as waste contaminated with asbestos.

Surfaces that have not been fully protected must be cleaned with a Type H vacuum and clean water. The contaminated water should be removed by a water filtration system.

Management of AC pipes and waste generated

In the case of asbestos cement pipes, especially among heavy consumers of asbestos (SONEDE, ONAS and CRDA), it is recommended the landfill in situ (at each park or district) of waste from stocks existing asbestos cement and waste from maintenance operations and maintenance operated networks.

For the future it is recommended that the least expensive solution and more respectful of the environment, or leave in place the asbestos network (buried) and put next new clean lines and the use of stocks in good condition following their meeting by painting and coverage.

The management of these asbestos products goes through several stages:

- Pollution study (by the park)
- Humidification inventory and debris
- Sorting and selection of parts for later use
- paint pipes in good condition
- Coverage of stocks used by a thick plastic watertight
- Removal of debris to the red zone (next to the landfill cell) and Overwrite any measures respecting the protection of workers
- Construction of a landfill cell from 50 to 100 m² per park
- Waste disposal in the landfill cell
- Cover and vegetation landfills
XII. Ecological method of asbestos waste management

Packaging

The company, which is the responsible of the withdrawal of MCA (Material Containing Asbestos) should take care to package and dispose of the waste work area when they are produced.

The wastes are conditioned in accordance with the regulations (TDG, etc.) and the rules imposed by the specifications of the MCA waste disposal centers. The type of packaging will be adapted to the nature of the waste site: free asbestos, asbestos related, palletized products, EPI, plastic films, etc.

The packages must possess special characteristics to prevent dispersal of asbestos fibers (tensile strength, tightness, decontamination) and allow handling at all stages of the disposal chain.

For asbestos waste, imposes the principle of double packaging. These wastes containing asbestos are further subject to the transport of dangerous products regulation, particularly regarding their outer packaging for transport, which can be, according to the disposal route:

- the great bulk containers (IBCs),
- steel drums, aluminum or plastic, and which must be marked as required by those regulations.

Asbestos-related products (asbestos cement or other) are conditioned by package size suitable:

- large bulk containers (IBCs or "big bag") to deposit waste packaged in plastic bags or garbage, fragments, small pieces of various kinds having no risk of puncturing their envelopes;
- pallets or skylights boxes for products "flat" whole asbestos cement. Pallet dimensions are greater than those of the products, to reduce the risk of tearing of the plastic film packaging each packet by impact or friction during transport and loading phases to facilitate the package handling operations;
- racks or skylights boxes for tubular asbestos-cement;
- cases or cartons thick placed on a pallet for storage of asbestos waste related wrapped in plastic film, such as full tiles vinyl-asbestos or asbestos-free but polluted with glue containing asbestos.
Identification des colis

Each unit packaging waste containing asbestos, it must be applied a label that clearly draws attention to the fact that the package contains asbestos, so a dangerous product. EEC for the labelling pattern is given in the following figure.

In addition to the labelling operation, the EEC countries require in case of transport packages containing free asbestos (dust, fibers), additional shipping label, characterized "Class 9", which must be affixed outer packaging waste transportation. This label must appear on the two opposite sides of the package and must be visible at the opening of the container or vehicle.

Waste Disposal

The conditions of handling asbestos waste packed (bags, IBC, drums, containers, etc.) must be programmed and organized to reduce risks during handling at different stages of the disposal route and particularly those related to:

- handling during all stages of transportation and disposal procedures
- to the release of asbestos fibers due to possible tearing of the packaging

Support means for handling, such as manual or motorized carts, wheeled containers, etc. and adapted lifting systems are used. The dump unloading is strictly prohibited.

Transportation

For the European Community, the waste materials containing asbestos are classified as waste (or subjects) Class 9 hazardous "materials and other dangerous objects" by the ADR regulations (European Agreement Relating to International Carriage of Dangerous Goods by Road).
In the case of transport free of asbestos waste, regulatory requirements for the transportation of dangerous substances apply in full, particularly with regard to:

- the transport unit shall maintain compliance with ADR
- packaging waste must be respected (packaging, labeling, etc.)
- Information and basic training of transport vehicle drivers
- training must be given to all personnel involved in the transport of dangerous goods (packer, loader, purchase, logistics service ...), according to their responsibilities and area of activity

Information documents must be on board the vehicle:

- ADR training certificate valid driver must be presented in all conditions,
- safety instructions must comply with section 5.4.3 of ADR,
- a declaration receipt of transport activity of hazardous waste is required,
- a dangerous goods transport document is required
- number of loaded packages, real gross mass offered for carriage
- protective equipment required by crew member
- the vehicle's emergency equipment (included in the safety instructions)
- description of the vehicle by two orange blank panels attached to the front and rear of the vehicle
- etc.

Asbestos waste related may be exempt from ADR according to the arrangement 168, and therefore all the provisions described above, provided that they are packed tightly. To prevent the release of fibers during the different phases of transportation, due to shock or friction between packages (loading, transport, unloading), packages should be chocked and secured in sealed buckets or closed or sheeted vehicles (always strictly forbidden to unload by dump).

Disposal

There are several techniques for the removal of asbestos waste:

- **A landfill disposal in situ**

 We recommend, as explained above that this discharge is not apparent as soon as it is identified, remains the responsibility of the landowner. The space of the discharge can be valued in this case, so deducted the costs of the construction of the landfill.

- **An ex-situ disposal landfill**,

 It is possible, but it engages in addition to transportation costs, a group of asbestos waste from various sites. In addition it should be specialized asbestos. With or without stabilization, the waste is buried in the landfill in the form of a burying Center hazardous waste kept.

 In Europe, old quarries mines (metal, salts, and useful substances) were used as dumping of dangerous products. Nevertheless, the case is too ill-suited for Tunisia.

- **Vitrification**
Moreover, apart from landfills, there are currently in Europe other thermal options to destroy the asbestos constantly turning it into a simple glass (vitrification) by the use of powerful plasma torches, to rid the environment and glass collection for disposal in an uncontrolled landfill economy requires. According to the data, the thermal processes require high heat and high energy to destroy asbestos which is in fact a highly refractory mineral. Vitrification temperatures are in the range 1500-2000 ° C. The vitrification process is highly energy-consumer and is not in the economic capacity of Tunisia.

In this case, the asbestos is introduced into the thermal unit to a required residence time. Then the transformation product must be cooled before performing a test. If in the light of this test, the final product (glass) is free of asbestos under review by transmission electron microscopy, the operation is successful, but it turns out it always contains the final product already obtained must be recycled in the torch. High temperatures need strong amounts of electricity, at a cost of increasingly high, with high maintenance costs on the refractory brick making inner furnace wall. In addition, the thermal unit must have a complete and efficient washing system which prevents the escape of dangerous gas (eg, dioxins, furans and nitrogen oxides).

As part of this study and taking into account the special characteristics of asbestos waste in Tunisia (mainly asbestos cement), the field and the general geography of the country, the waste landfill option is as the optimum techno-economic solution of choice.

Waste materials containing asbestos are eliminated waste storage facilities in alveoli dedicated asbestos: dangerous (class 1) for all raw asbestos waste or those contaminated with asbestos. This type of installation is the only one authorized to receive waste friable, dust and waste containing free asbestos as PPE, plastic films and encapsulation materials not cleared, filters, or broken non-friable ACM, vinyl asbestos tiles, etc. and asbestos-related materials that, when they become waste is classified as "hazardous waste". Asbestos mixed with chemicals, there is generally denied.

XIII. Diagnostic method and procedures for assessing the status of products, buildings and asbestos waste

Risk Assessment Methodology

All the results of investigations conducted on the buildings are designed according to the risks they may present. The assessment of risk associated with asbestos is conducted according to the procedures manual for the determination of hazardous substances from the British organization of security and hygiene (HSG264 Asbestos: The survey guide Health and Safety Executive Health and Safety Executive, 2012, UK).

All asbestos materials identified in buildings are placed in a priority rating system for risk assessment. This system will allow the customer to plan all disposal and remediation measures.

The implementation of the system will:

- maintain a safe working environment by considering all asbestos materials were identified,
- a compliance with European legislation for safety and hygiene.

A priority rating is assigned to each element identified asbestos-Controlled sites. This rating is based on a combined assessment of the state of the friability and location of asbestos-element. Analytically, each asbestos containing material is classified as follows:

Materials Risk Assessment
The following table summarizes the parameters considered for the assessment of risk related to the presence of asbestos-containing materials in the inspected sites. This is essentially the following parameters: Product Nature, quantity and extent of damage and deterioration, or the surface treatment of materials used, and the nature itself of asbestos as identified by analysis.

<table>
<thead>
<tr>
<th>Type of product</th>
<th>Description</th>
<th>Extent of damage / deterioration</th>
<th>Surface treatment</th>
<th>Nature of asbestos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Composites reinforced asbestos (or debris Products): plastics, resins, sealants, roofing felt, vinyl floor tiles, semi-rigid paints, decorative finishes, asbestos-cement, etc.</td>
<td>0</td>
<td>0</td>
<td>1 Chrysolite</td>
</tr>
<tr>
<td>2</td>
<td>Asbestos insulation boards, factory panels, other low-density insulation panels, asbestos textiles, gaskets, ropes and asbestos-textile fabrics, asbestos-paper</td>
<td>1</td>
<td>1</td>
<td>2 amphibole asbestos excluding crocidolite</td>
</tr>
<tr>
<td>3</td>
<td>Thermal insulation (ex. Conduct and boiler insulation), sprayed asbestos (asbestos projection), bulk asbestos, asbestos mattresses, asbestos-packaging</td>
<td>2</td>
<td>2</td>
<td>3 Crocidolite</td>
</tr>
</tbody>
</table>

Materials Risk Assessment Tools

Risks related to the presence of materials containing asbestos in target locations are classified as specified in the following table.

<table>
<thead>
<tr>
<th>CATÉGORIE RISK</th>
<th>DESCRIPTION</th>
<th>SCORE ATTRIBUTÉDÉ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevé</td>
<td>Urgency of intervention</td>
<td>10 -12</td>
</tr>
<tr>
<td></td>
<td>Immediate withdrawal / or encapsulation and decontamination work by adopting appropriate working conditions of asbestos to the nature and product hazards</td>
<td></td>
</tr>
<tr>
<td>Means</td>
<td>To implement an appropriate management plan</td>
<td>7-9</td>
</tr>
<tr>
<td></td>
<td>Because of the likelihood of injury or damage to the equipment containing asbestos, plan and organize future removal or encapsulation prioritized by adopting the procedures and working conditions of the most appropriate asbestos.</td>
<td></td>
</tr>
<tr>
<td>low</td>
<td>To implement an appropriate management plan</td>
<td>5-6</td>
</tr>
<tr>
<td></td>
<td>Establish signals or labels pointing to the presence of asbestos where possible, with the mention maintain carefully and accordingly, do not disturb or destroy.</td>
<td></td>
</tr>
</tbody>
</table>
Table

<table>
<thead>
<tr>
<th>Risk category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very weak and minor</td>
<td>To implement an appropriate management plan: Establish signals or labels pointing to the presence of asbestos where possible, with the mention maintain carefully and accordingly, do not disturb or destroy.</td>
</tr>
<tr>
<td>High risk: urgent intervention</td>
<td>Immediate withdrawal / encapsulation and or decontamination adopting suitable working conditions for asbestos nature and product hazards</td>
</tr>
<tr>
<td>Medium risk: urgent intervention</td>
<td>Implement an appropriate management plan: Because of the likelihood of injury or damage to the equipment containing asbestos, plan and organize future removal or encapsulation prioritized by adopting the procedures and working conditions the most appropriate asbestos.</td>
</tr>
<tr>
<td>Low risk, very low and minor: Urgent intervention</td>
<td>Development of a management plan: Document, document and archive product to asbestos as a practical way, by ensuring the proper conservation of the material and the maintenance of all products and locations accordingly.</td>
</tr>
<tr>
<td>Risk missing: no asbestos detected</td>
<td>No intervention necessary action against asbestos</td>
</tr>
</tbody>
</table>

Risk category assessed

High risk: urgent intervention

Immediate withdrawal / encapsulation and or decontamination adopting suitable working conditions for asbestos nature and product hazards

In this category, the material consists of existing asbestos on the premises, this is a clear risk, immediate and substantial health. It is then imperative that managers react immediately.

Medium risk: urgent intervention

Implement an appropriate management plan: Because of the likelihood of injury or damage to the equipment containing asbestos, plan and organize future removal or encapsulation prioritized by adopting the procedures and working conditions the most appropriate asbestos.

In this category, asbestos composite materials pose a significant risk but not immediate health. Under these conditions it is necessary to develop immediately, a layout plan of the premises. This risk applies to any place that would have presented during inspection, asbestos composite materials, but find themselves under good storage conditions and stability (encapsulated materials, with no signs of damage, for example).

Low risk, very low and minor: Urgent intervention

Development of a management plan: Document, document and archive product to asbestos as a practical way, by ensuring the proper conservation of the material and the maintenance of all products and locations accordingly.

In the situation at the asbestos material does not pose an immediate health risk. It is recommended that managers prepare a management plan that allows regular risk assessment to maintain the material in venture minimum conditions in the class, to the health of occupants, visitors and stakeholders on the premises.

The recommendation for this category encompasses most appropriate labelling and documentation (1) All asbestos materials and (2) a specification of the area and places of location of such materials. For materials of this type remain on the premises, any maintenance by certified company that can come in contact with these materials containing asbestos, they should be warned of the danger, and must comply with permits and requirements of the procedures adequate to prevent any disturbance of asbestos-containing components.

Risk missing: no asbestos detected

No intervention necessary action against asbestos

During the campaign of investigation and inspection, the project team concluded that there are arguments that it is quite possible that some places visited buildings and materials were free of asbestos components. Moreover, despite the fact that some materials were suspected of containing asbestos and have been sampled, the corresponding analyses Laboratory did not reveal the presence of asbestos. Therefore, there is no valid reason to proceed with, or program in this case an intervention against asbestos.
XIV. Conclusion

Asbestos removal action plan cannot be implemented without a training and awareness program. This program will be conducted at two levels:

- Training of specialists for identification, measurement and control of asbestos products. This training can be ensured only by approved organizations.
- Training for removal operations and landfill of asbestos. This training will include the following components:
 - The measures, actions and precautions to take when working in medium containing asbestos products or contaminated by asbestos
 - The stabilization techniques and products containing asbestos of security on site in case of difficulty of abduction,
 - Technical asbestos removal and remediation of sites contaminated by asbestos,
 - The management of asbestos waste and replacing them with non-asbestos products,

This training must be provided jointly by private organisations and agencies of the Ministries of environment and health, under the gaze of the National Comity of asbestos.

This training will be provided:

- For the staff of enterprises which will be specialised in remediation and decontamination of asbestos sites
- For the engineers of the consulting firms wishing to participate in the studies within the scope of this action plan;
- For the staff of DHMPE (Hygiene and Environment Protection under the Ministry of Public Health), the ANGeD (National Agency of Waste Management) and ANPE (National Agency for Environment Protection).
دليل منهجي للتصريف في نفايات الصخر الحريري

1. مقدمة

هذا الدليل:

- يساعد على إحصاء الصخر الحريري (Amiante) والمنتجات المستخرجة منه أثناء استخدامها، وصيانة وتعهد المنتجات والمواد والمباني، ويساعد على نوعية الإنتاج العام بوجودها.

- يعدّ كليفية النافذة الجزء EZ لازالة الصخر الحريري (إزالة النافذة خاصة، التصرف في حافز النافذة، استخدام العناصر المواجهة) وربط النافذة (التي تحتوي على الصخر الحريري) إستمثيري.

- يدعم على ضرورة استخدام المواد والملابس الواقية مع الأخذ بعين الاعتبار عوامل الخصائص البشرية والاختلافات الجسدية بين الناس.

الفنات المصورة بهذا هم أصحاب الصناعات والعمال ومتفقد الشغل:

- بالنسبة إلى صاحب المصنع، يوفر هذا الدليل معلومات عن أحدث الإجراءات التقنية، والتنظيمية عن حماية الصحة وعن سلامة الموظفين، التي يجب أن يطبقها، أما بالنسبة إلى العامل، يوفر هذا الدليل معلومات حول التدابير الوقائية، وذلك بالوقوف على أهم المجالات التي يجب على العامل أن يتمثل فيها تكوينا، وبحثه على المشاركة في تحقيق ظروف العمل لضمان السلاسة والصحة.

- بالنسبة إلى منفذ الشغل، فهذا الدليل أهم الدليل الذي يمكن أن يعاينه أثناء زيارته التقنية.

لقد هذا الدليل مجال تطبيق واسع النطاق، لأنه يوفر معلومات في ثلاثة مجالات:

- في أعمال يمكن أن تجعلك تتعارض للاشرار الصخري بشكل غير موفق (مثل أثناء صيانة المباني، حيث تكون

- مخصصة لخطر اكتشاف الصخر الحريري بشكل غير موفق)

- في الأعمال التي يكون التعارض لألياف الصخر الحريري العالية في الهواء متوغّفالا (الأعمال المبرمة مسبقا)

- في الأعمال التي تحتوي على نسبة خطورة عالية للتعارض للحرير الصخري العاقل في الهواء والتي يجب أن تنفذ من قبل متعاقدين مختصين

2. تعرف الصخر الحريري

الصخر الحريري هو اسم يُطلق على تشكيل طبي يُشكل من سلسلة معادن طبيعية وفق استخدامها في منتجات تجارية متنوعة. ولعديد من المنتجات الصناعية صناعة الشعل العلقي، ومواد كبرى، ومادة خاصة لمختلف الطبقات الكيميائية والحارة، خاصة في حالة تعرض للضغط الكيميائي، وفي حالة الحروق إلى نحات.

تتسمي من الصخور الحريري إلى مجموعتين من معادن السيلانات الطبيعية الناتجة تحول الصخر البركاني مثل الصخور البركاني : السيلانيدات، الأمفيتريات. وصف الصخور الحريري السيراتيني الميمن هو الكروسيديت (الصخر الحريري الأبيض) وتمم غالب أنواع الصخر الحريري المستعمل منذ أواخر سنين 1800.

ومعنى تسمية نوع من الصخر الحريري:

- الصخور الحريري الصلب وهي من عائلة الأوريلوند: وتكون من الأوريلوند نفسه، والفينيريت (أوموزيت)، أوريلوند، تريوموس، كروسيندال، كريستالورن. وهو النوع الأكثر حموضة من الصخور الحريري. وتأثيره في عوامل التقدم والتحول، ويبطئ الآلي الأدنى، تنبيذ هذه المعادن في أشكال ليفية مجهرية و فُعَّالة في البناء.

- الصخور الحريري المرن: لأنها تستخدم بها خاصة في بعض الأسلحة المستخدمة في بعض الأعمال (صناعة الحبال المقاومة للحرارة، التسجيل المقاوم للحرارة، العلاقات والملابس الواقية للحرارة، أجزء النقل الأليّي ..)، فهي تتخرج من مجموعة السيراتينات (المعادن المغنيزي كلاكونلين العديّد) وإلى هذه المجموعة ينتمي السيراتينات الذي يستخدم في صناعة طباعة القوالب، ولكن المنتجات الاصطناعي baisic بعدة عناصر، والجزء ..، ولكن خاصة الكروسيديت المكون من ألياف طويلة جدا وأنه تنتهي لبيئتها مغيرة جداً، وميّزه من هذا الصناعة الحبال.
III. Produits contenant de l'amiante

La synthèse de l'étude sur les usages de l'amiante et la gestion des déchets amiante en Tunisie DGEQV-2014

DGEQV-2014

COMETE Engineering/PLINIOS SA 210
Synthèse de l’Etude sur les usages de l’amiante et la gestion des déchets amiantés en Tunisie

DGEQV-2014

الصخر الحريري في المواد والمعدات: السخانات، مخدات الحريق، الحمامات، الأفران، أبواب، أبواب المصاعد، المشعات

ولا يمكن التأكد من وجود الصخر الحريري في منتج ما إلا من خلال التحليل المخبري. ومع ذلك، هناك طرق أخرى لكشف وجود الصخر الحريري في منتج أو في مكان ما، مثل العثور على قطعة صغيرة أشبه ما تكون بالشعرة في أطراف جزء مقطع ومقاومته للذّار (يمكن استخدام ولاعة، على سبيل المثال).

لا يمكن التأكد من وجود الصخر الحريري في منتج ما إلا من خلال التحليل المخبري. ومع ذلك، هناك طرق أخرى لكشف وجود الصخر الحريري في منتج أو في مكان ما، مثل العثور على قطعة صغيرة أشبه ما تكون بالشعرة في أطراف جزء مقطع ومقاومته للذّار (يمكن استخدام ولاعة، على سبيل المثال).

استخدام الصخر الحريري في تونس

لم تكن تونس بلداً منتجاً للحرير الصخري، وأنّا كانت تستورد بشكل مستمر إجمالياً احتياجاتها من هذه المادة، وكانت تصدر جزئياً المنتجات المعتمدة على الصخر الحريري. والتورغدة لتونس بالصخر الحريري هي أساساً روسيا وكندا وزيمبابوي. ومع ذلك انخفض بشكل حاد استيراد مسحوق ورقائق الصخر الحريري الخام بداية من سنة 2002، مع تحويل مصنع SICOAC في جبل SICOAC إلى استخدام الصخر الحريري في منتجات العزل الصخري في تونس.

COMETE Engineering/PLINIOS SA
Synthèse de l’Etude sur les usages de l’amiante et la gestion des déchets amiantés en Tunisie

DGEQV-2014

المكونات المستوردة التي تحتوي على الصخر الحريري وبيانات مصرفية

بالإضافة إلى مسحوق الصخر الحريري ورقائق، تستورد تونس أيضا العديد من المنتجات التي تحتوي على الصخر الحريري وخاصة المنتجات التي تحتوي على الصخر الحريري الإسمنت، وهو الاحتكاك بالنسبة إلى الآلات والمركبات. التسميات المصرفية للحرير الصخري والمواد المستوردة التي تحتوي جزئياً على الأقل على الصخر الحريري، هي كما يلي:

<table>
<thead>
<tr>
<th>المنتج</th>
<th>NSH</th>
</tr>
</thead>
<tbody>
<tr>
<td>ألياف الصخر الحريري، في شكل رقائق، أو مسحوق أوغراها من الصخر الحريري</td>
<td>2524</td>
</tr>
<tr>
<td>مواد من الصخر الحريري الإسمنت، السيلولوز الإسمنت أو ما شابه ذلك</td>
<td>6811</td>
</tr>
<tr>
<td>حصير صخري في شكل ألياف</td>
<td>6812</td>
</tr>
<tr>
<td>بباتها الاحتكاك (الحرير، الرمل، الرمل، شرائح أرضية، إطارات صفيحة، رقائق)، غير مركبة، للفرامل، أو الواصلات، أو لكل المنتجات القائمة على الاحتكاك، التي تحتوي على الصخر الحريري، أو بدائل معدنية أخرى</td>
<td>6813</td>
</tr>
</tbody>
</table>

المواقع الملبوقة من مصانع تحويل الصخر الحريري

- المواسير، نشط من 1984 إلى 2012.

البنية التحتية وكبار المؤسسات المشتركة للمنتجات التي تحتوي على الصخر الحريري

كانت الشركة التونسية لللاستغلال المياه وتوزيعه (SONEDE)، ووزارة الفلاحة والموارد المائية (وناس) ونيودين الوطني للتطهير والمياه (نودين)، والديوان الوطني للموارد المائية (نودين) من كبار المستهلكين لمنتجات الصخر الحريري (الإسمنت، السائحة، السايحة، الأرنب، ...) وكان هذا خاصة بطريقة تتمنى عن طنين، حتى كان الانهيار من 2000-2005، عندما أدركنا أننا نواجه خطراً كبيراً: وهو الصخر الحريري، ومن بين المستخدمين الأخيرين لشبكات التوزيع التي تحتوي على الصخر الحريري الإسمنت، نذكر البلدية (شبكات تصرف مياه الصرف الصحي)، وضع كميات كبيرة من الصخر الحريري في المناطق التي كانت تحتوي على الصخر الحريري في عام 1998 و1999.

القطاعات الأخرى، المواقع الأخرى، المنتجات الأخرى

- بالنسبة إلى أسطول المحركات، تم استيراد كميات كبيرة من قطع الاحتكاك (الفرامل، وأقراص الواصلات) التي تحتوي على الصخر الحريري.
- بالنسبة إلى الاقتصاد في الطاقة والزكاة، استخدم الصخر الحريري منذ فترة طويلة لعزل شبكات التسخين، أو كعازل في مجالات التبريد، وفي الأفران ...
- وتجدر الإشارة إلى أن ص sof السيليكا (رمل الصوان) قد استخدم مثل الصخر الحريري، خاصة في مجال البناء وفي مجال النسيجين والتربي ي.

مجالات البناء التي قد تحتوي على الصخر الحريري

COMETE Engineering/PLINIOS SA

212
على الرغم من أن استخدام الصخر الحراري قد وقع حظر، فإن الملايين من الأمتار المكعبة من المواد التي تحتوي على الصخر الحراري ما زال في مكانها في المنازل القائمة في أوروبا، وهذا يعني أيضا أنه من غير المجد التفكير في إمكانية التخلص كلًا من مادة الصخر الحراري حتى في الدول الغربية.

وعادة ما تكون هذه المواد موجودة في الأشكال التالية:

المواد البانية:
- كرتون الصخر الحراري وأوراقه للعزل الحراري (اللحم، والأقراص والخيوط الكهربائية، العازلين أو ناقلات الحرارة، المعادلات والحماية الحرارية للأسطح).
- ألواح الأسطح الداخلية والوقاية من الحرائق، الأبواب وجردان التقسم العازلة للحرائق، وجردان التقسم الخفيفة.
- الخيوط أو الألواح ذات الفاصل، أو الروافد والخيوط: هياكل النيران، مقاومة للحرائق، وعازلة للحرائق والحوائط، والغرف، والألواح الداخلية، وجردان التقسم، وال ألواح السقف الداخلي، والألواح التدفئة، في الغاز التصريف، أنابيب الماء، أسلاك الكهربائية، الأبواب والروافد، في الهندسة، ومعدات التسخين، وتكنولوجيا الأقراص، والسلامات الداخلية، وتكرير الأسطح، والخ.

منتجات الصخر الحراري الإستثنائي:
- أوراق (الغلاف) مستوية أو موجة، الحرارة، أو ألواح التسقية الأخرى.
- هياكل النيران، أو ألواح تغليف الواجهات.
- جدران التقسم الداخلي واللائحة، أو ألواح السقف الداخلي.
- ألواح أخرى أو رفوف النسيج، الأشكال المعروفة
- مسلاك التشطيب ومسلاك التهوية، أغلاف، التغليف، مفرغ الفاعورات، أنابيب إمدادات المياه والصرف.
- مخدة النوار واللائحة مقاومة للحرائق، وجردان التفسrier الداخلية، ومواد بخارية، ومواد حرارية، ومعادل، للحريق.
- مواد في مجالات مختلطة (الأعمال، والقطعان، الخ):
- بلاط الأرضية البلاستيكي (فيديل – الصخر الحراري).
- الأسطح للغلاف المنغوب للأرضيات.
- عجين سد التقويب (ال惩罚، الخ).
- أسنة للغلاف والدهن.
- عزل السقوف عن تسرب المياه بالأسفل، وفقانف أوراق تغليف، التغليف بالأسفل للعزل الحراري.
- الفوصل العازلة، وفواصل التوسع، والسيباج، والمحرك، الخ، وفواصل الختم وعزل المياه.
- تحليل وتركيبات نموذجية التنشيطات للألواح وجردان التقسم الداخلية، وتثبيت بالخلائط اللاصقة، المواد اللاصقة، ومواد التغليف العازل.
- التغليف والخلائط المتحولة على الجبس للوقاية من الحريق.
- مواد الاحتكاك (ألواح الفراق، مختلطة المحركات والألواح).

عناصر العزل الكهربائي الحווה على الصغر.
7. **Mouvements et effets à l’image du tabac**

Le tabac est une source importante de pollution, notamment en termes de risques pour la santé publique. Les études scientifiques ont montré que le tabac peut entraîner des effets négatifs sur la santé environnementale et humaine. Les risques associés au tabac incluent des maladies respiratoires, des problèmes de santé cardiovasculaires et des accidents de travail. En outre, le tabac est lié à la pollution de l’air et de l’eau, ainsi qu’à la contamination des sols et des eaux souterraines. Les effets de longue durée de la pollution due au tabac sont également une préoccupation majeure.

8. **Prévention et lutte contre le tabac**

La prévention et la lutte contre le tabac sont essentielles pour réduire les effets négatifs de la pollution due au tabac. Les mesures de prévention incluent la sensibilisation des populations, l’encadrement des ventes de tabac, et l’octroi de soutien aux personnes souhaitant arrêter de fumer. Les mesures de lutte contre le tabac peuvent inclure la réglementation des conditions d’exploitation des circuits de distribution de tabac, ainsi que la mise en place de politiques pour réduire la consommation de tabac. Les mesures de lutte contre le tabac impliquent également la mise en place de programmes de soutien aux personnes souhaitant arrêter de fumer.

9. **Conséquences économiques de la pollution due au tabac**

La pollution due au tabac a des conséquences économiques majeures. Les coûts de santé induits par le tabac incluent les coûts directs liés aux soins de santé et les coûts indirects liés à la perte de productivité. Les coûts de santé indirects incluent également les coûts liés à la mortalité précoce due au tabac. Les coûts de santé indirects peuvent être calculés en termes de perte de productivité, de perte d’attente de salaire, et de perte d’investissement dans la santé. Les coûts de santé indirects liés au tabac ont une incidence significative sur l’économie nationale et peuvent être une source majeure de dépenses budgétaires. Les mesures de prévention et de lutte contre le tabac peuvent contribuer à réduire les conséquences économiques de la pollution due au tabac.
القرار، والقرارات الناشئة، والممارسات. في هذا السياق، فإن مجموعة كبيرة من المنتجات الأخرى التي يمكن أن تحل محل الصخور الحرارية في استخدامات التقنية المختلفة. وإن نفس البلدان التي كانت من قبل منتجة ومصدره للصخور الحرارية الصناعي هو مورد مصدر هذا الصناعي الذي مستلم وتوزيعته مع نهاية عام.

للاختيار أيضًا التصريح الذي يشمل توظيف واستخدام الصخور الحرارية، إلى مرحلة الصناعات الحديثة من النظرة، المنتجات الصناعية لها. ويشمل ذلك المواد الصناعية مع هذا النمط الذي يمثل، ويعتبره الصخور الحرارية. وقد من خلال التحول دون أن يلاحظ أحد ترقبًا، وخاصة دون أثار، لأن الأثر الإيجابي بالثليجة، وتحتوي على ما يعكس التأثيرات على صحة الإنسان.

ويجب أن نلاحظ أيضًا التحول التدريجي في الشبكات العامة المؤهلة من أنابيب ومواسير أصدقاء الصخور الحرارية، إلى المواد التي تخضع لها تعمية، وذلك باستخدام يمكن الصخور الحرارية. وأن جودة المحكمة من كبار المستهلكين السابقين للصخور الحرارية ليتناسب هذا التحول، كانت سريعة، وكانت عمليًا دون أثار اقتصادية كبيرة. وبدلاً من ذلك، ستكون أثر المكاسب على الصحة والبيئة مماثلة لها.

اللوائح والقوانين الوطنية ذات الصلة بالتصريف في نفايات الصخور الحرارية

لقد صنفت التشريعات في تونس الصخور الحرارية وتفاهمات من المواد الخطرة، ومن المنظم أن تتم تصريح عن كمية نفاياتها وتصرف فيها إلى تحميل وتحليل وتفريغ وحرية البضائع الخطرة في المعالجات الخطرة.

قانون رقم 46-28 الصادر في 10 جوان 1996 المتعلق بالتفاهمات وتصرفاتها وتكيفية النفايات فيها، وتحليل النفايات ويات صناعية، التي تمتد بها المعالجات الحديثة في نفايات الصخور الحرارية. وتكون تلك النفايات التي تعتني على الصخور الحرارية كنفايات خطرية بعد تكليفها معها تفاعلاً خاصًا.

المرسوم 1999-2398 للن_sprite النافذ في 10 أكتوبر 2000، يحدد قائمة في التفاصيل الخطرة، ويصنف نفايات ويات صناعية من المواد المعالجة، وذلك في نفايات الصخور الحرارية.

قرار من وزير النقل الصادر في 19 جانفي 2000 يحدد عادات الخطر والإشارات المميزة بالمتعلقة بنقل المواد الخطرة عبر الطرق.

قرار من وزير النقل الصادر في 19 جانفي 2000 يحدد عادات الخطر والإشارات المميزة بالمتعلقة بنقل المواد الخطرة، ويستوجب تقللها الحصول على خارطة بخط سيرها، ونموذج من هذا الخارطة وشروط تسليمه.

الدراسة التي قامت بها وزارة البيئة في سنة 2014 أدت إلى إقامة نفق مرسم بضبط:

- حظر الصخور الحرارية في تونس.
- مستوى التعريض للصخور الصناعية في المباني في تونس.
- فرض دليل التعامل الجيد أثناء إزالة الصخور الحرارية والتصريف في المنتجات والتفاهمات التي تحتوي عليه.
- فرض دليل التعامل الجيد أثناء إزالة الصخور ومعالجة المواقع الملوثة بالصخور الحرارية.

المعايير المعمول بها

المعايير المشتركة للهواء الطلي وتعريض للصخور الحرارية

تماشياً مع التشريعات الأوروبية لحماية الحماية من خطر التعرض للصخور الحرارية (التوجه EEC/477/93)، وبصفة عامة من قبل التوجه EEC/18/2003، فإن أي استخدام للعمل يسبب أن يقفل على الأخماد، أو الموانئ، على الصخور الحرارية بسريبة تصل (البيرة 8)، وقد تم اعتماد هذه التوجهات الأوروبية في تشريعات الدول الأعضاء. وتم تطبيق نفس النسخة في الولايات المتحدة الأمريكية.

وعلاوةً على ذلك، فإن تجربة الأوروبية، فإن نسبة التعرض لصخور الصخور الحرارية في الهواء من الألياف في سب 1 هو 0.1 من الألياف في سب 3 (8).

في معظم البلدان الأوروبية، فإن الحد الأقصى من الهواء الطلي هو 0.01 من الألياف في سب 3 (بريطانيا العظمى 248 HSG HSG PD/212/2006)، وفي MDHS 39/4 وMDHS 39/4 Proposal PDI...). كما ينص القانون على أن هذه الفحوصات ينبغي أن تتم وتظهر في الضوء المستقبلي بالجهة بأعتباره ألياً للتأكيد. وفرض بعض الدول الأعمال أن تكون نسبة التعرض أقل من 0.005 من الألياف في
IX. Nefasias le long du chemin de l'amiante

L'idée de la synthèse, AC

شيكا، إضافةً لأنابيب والعشيرة في أوقات النشاط.

والأعمال، والتي تتم دفعها في الصحراري في حدود أقل من 0.01 من الألياف في سم.

IX. Nefasias le long du chemin de l'amiante

L'idée de la synthèse, AC

شيكا، إضافةً لأنابيب والعشيرة في أوقات النشاط.

والأعمال، والتي تتم دفعها في الصحراري في حدود أقل من 0.01 من الألياف في سم.
في حالة وقوع ضرر كبير، جراء أعمال صيانة أو أعمال تخزين: للبلاتيك البلاستيكي للأراضي (التي تحتوي على الصخر الحريري) يمكن أن تخرج إذاً الخزائن منها، أو تغليف بمادة أخري (على سبيل المثال، بمواد بلاستيكي) آمناً بالنسبة إلى غيرها من المواد والحراثي الصخري الإسمتي، ومن مواد الحقن، والجزء، ...) فقت الحزبان إلى البلاستيكي.

في حالة إزالة المواد التي تحتوي على الصخر الحريري، يجب أن تقوم بهذا العمل في طريق الخريطة المعمود في هذا المجال، ومن تقي موفرين بجميع المواد القانونية ليكونوا قادرين على تطبيق جميع الإجراءات الوقائية الصارمة والضرورية.

قبل إزالة المواد، أو إزالة الألياف التي تحتوي على الصخر الحريري، ينبغي أن تطبق المبادئ العامة التالية للحد من التعرض للألياف الصخر الحريري والحد من انتشار الألياف في الهواء.

- تحديد مدى ومنكان المواد التي تحتوي على الصخر الحريري.
- الحذر من الدخول إلى منطق عمل بالشكل المناسب (على سبيل المثال وضع شريط أواحاج أوادبي التسييج الكمال؛
- وضع أوقات تحرير واضحة وكافية (على سبيل المثال حظر الصخر الحريري، منع الدخول إلا إلى الأشخاص المصرح لهم بذلك).
- غلق أو حماية المناطق المحيطة (على سبيل المثال بوساطة أوراق البولي إيثيلين المقاومة)، وهذا يتوفر على مدى العمل لتتجنب التلوث بالالياف الصخر الحريري العائمة في الهواء (انظر أدناه).
- تقليل الأنشطة المكسيمو لبعض الدخول في المنطق، قدر المستطاع;
- استخدام في جهاز التنفيس المناسب واعداد الوقاية الشخصية (مثل ملاام العمل الوقائي والأدبيات الفائقة للعمل);
- تطبيق التقتنيات الملائمة لحد من انبعاث الألياف (على سبيل المثال الترتيب، وتقنيات التعريض للرطوبة، وضع مروحة لاصطناع الهواء الداخلي، الخ);
- تابع إعداد المواد التي تحتوي على الصخر الحريري (على سبيل المثال الإزالة والتخلص من القطع كاملاً، وإزالة وضع النفايات التي يمكن أن تحتوي على الصخر الحريري في كيس مزدوج البطالة أو مغلق ثم وضع كلمة (صخر رابطاً على قبل التخلص منها.
- تنظيف منطق عمل بالكامل
- حماية مراعات الإخلاء لمنع انتشار الثقوب بالصخر الحريري
- ضمان تغليب أمان (على سبيل المثال التغليف أو وضعها في كوايس) والتحذير الأمان لنفاذيات الصخر الحريري (على سبيل المثال في صندوق قابلة للشحن).
- ضمان نقل أمان (إلى جميع التخلص من النفايات
- التخلص من النفايات التي تحتوي على الصخر الحريري فقط في المواعش مخصص لها (وفقاً للوائح الوطنية).

حماية الأفراد المعتمدون مع الصخر الحريري

من المستحسن أن يقع التدريب على متخصصين محترفين في التعامل مع المواد التي تحتوي على الصخر الحريري. ومع ذلك، إذا تم تخفيف التخلص من الصخر الحريري من قبل الفرد نفسه، فإنه يتطلب بالحرص على مرااعة قواعد الحماية التالية:

- ضرورة حماية الجسم عن طريق الأقمشة الوقائية، التي يجب تبليغها، منها بعد كل استخدام - قابع يحتوي على مصفاة FP3، وهو نوع FFP3 (تفعيل مسبق تدريج).
- تجنب اندثار الغبار عن طريق:

+ تفكك عناصر التثبيت إذا كان ذلك ممكنًا
+ استخدام أدوات البلاستيكي أو ذات السرعة المنخفضة (لا ينصح بالأدوات ذات السرعة العالية)
+ التعامل مع الصخر الحريري بحذر (رمي المواد على الأرض يمكن أن يتسبب في كسر وانبعاث الغبار)
+ ترطيب موسع للمواد التي تحتوي على الصخر الحريري (مع مرااة المخاطر الكهربائية)
+ تنظيف المنطقة الملوثة عن طريق مكنسة كهربائية ذات تصنيف جيدة (لمكنسة اليدوية)
+ تخلص النفايات الألياف عن العمل في كوايس عازلة للماء (ما في ذلك الملايب والقفص). "وربأ أن تقي الأفراد عن طريق إبعاد الأشخاص غير المعنيين بهذه الأعمال

COMETE Engineering/PLINIOS SA
XI

إزالة المواد التي تحتوي على الصخر الحربيي الأسمنتي

إزالة المواد التي تحتوي على الصخر الحربيي الأسمنتي غير القابلة للتلف

تفاوت الصخر الحربيي الأسمنتي، ألوان التسقيف التي تحتوي على الصخر الحربيي الأسمنتي، الأنبوب المصغّن من الصخر الحربيي الأسمنتي.

لا توفر استخدام المواد المستخرجة من الصخر الحربيي الأسمنتي، إلا في بعض الحالات، الفائدة التي تقدمها في تلقيح البشرة أوูمنشاب

وتشمل هذه المواد من خليط متجانس من الأسمنت والألياف، وعلي الرغم من أنها مشودة بإحكام، فإنه من المحتمل أن تتبعها منها

ألاف الصخر الحربيي أما:

- تسبب أضرار ميكانيكية قادحة (الكسر، التقصي)
- أو تسبب عملية صمّة سرعة فائقة (قطع)
- أو تسبب سقوط وانتشار النباتات الجافة (الأشات والطحالب)، التي تحتل سطح الألواح وتساهم في تدهورها.
- وما لم يكن هناك عائق طبيعي، فإنه يجب أن تتم إزالة المواد التي تحتوي على الصخر الحربيي الأسمنتي من خلال فتكك، وتبني أن تكون منتجة للوقائع التي تهدف إلى حماية العاملين البينة من مخاطر ألياف الصخر الحربيي الأسمنتي.

ولاية الصخر الحربيي الأسمنتي في أعمال الهدم أو الريم، فإن الطريقة العملية تقتضي:

- إزالة الصخر الحربيي الأسمنتي قبل الهدم.
- حماية الأسطح الأخرى من التلوث (في أعمال التحدي).

تأتي كسر المواد التي تحتوي على الصخر الحربيي الأسمنتي، وإزالة المادة بأكملها;

لا تحافظ على المادة رطبة عند الاستغلال عليها، ولكن لا تستخدم الكثير من المياه، فهذا من شأنه أن يسبب في تكوين الوحل.

إذا كان الصخر الحربيي الأسمنتي المزمن إزالة موجودا على ارتفاع كبير، يجب إزال مادة الصخر الحربيي الأسمنتي على طلعة صلب نظيف، و يجب أن يكون منشا آمنة للوصول إلى إزالة المواد التي تحتوي على الصخر الحربيي الأسمنتي الموجودة في أماكن مرتغعة.

إزالة النفايات والأنقاض التي تحتوي على الصخر الحربيي في أسرع وقت ممكن كي لا يتم سحقها تحت أقدام المشاة أو تجمع على المسار.

ألا تستخدم الحرارة لتحويل الصخر الحربيي الأسمنتي ووضعها في شكل أكام.
Synthèse de l'étude sur les usages de l'amianté et la gestion des déchets amiantés en Tunisie

DGEQV-2014

COMETE Engineering/PLINIOS SA

219

لا تكون حطام الصخر الحريري الأسمنتي.

• يجب التخلص وإعداد نفايات الصخر الحريري الأسمنتي وحذامها باعتبارها نفايات ملوثة.

بجب إعداد كل الصخر الحريري الأسمنتي الكبيرة تماماً دون كسر أو فصل، ويجب أن توضع في صندوق مغطّى أو في شاحنة مغطّى، أو أنها ينبغي أن تكون ملقوّة في أوراق البوليني البني قبل التخلص منها.

• يجب تنظيف النفايات صغيرة الحجم ورش الغبار بمكثفة كهربيّة من صنف H مختصرة بالصخر الحريري. الحطام الكبير الحجم، و الذي لا يمكن نقله يجب جمعه باعتباره من نفايات الصخر الحريري.

إجراءات عملية

• ترسم منطقة العمل وتأنّيم سلامة الآخرين.

• تخطيط العمل من أجل التقليل أو تجنب الاضطرابات من جراء استخدام المواد التي تحتوي على الصخر الحريري.

• تغليف الأسطح لأوراق البوليني البني من 125 ميكرون u (مقاس050) أو 250 ميكرون، المواد إزالتها والتخلص من النفايات بعد العمل باعتبارها ملوثة بالصخر الحريري.

• مزاولة العمل بالحرص على الحد من عدد العمال الحاضرين.

• تطبيق أساليب الحد من آثار النفايات الحريري في الهواء (مثل استخدام المكثفة الكهربيّة، رش المياه).

• استخدم أجهزة لحماية التنفس خاصة بالصخر الحريري (على سبيل المثال EN 149 FFP3).

• لا تكسر المواد التي تحتوي على الصخر الحريري.

• تجري العمل على المواد التي تحتوي على الصخر الحريري وألتي تكون موجودة مباشرة فوق;

• يجب استخدام مكثفة كهربيّة خاصة بالصخر الحريري (صنف H) وأساليب إزالة الغبار للتنظيف، مثل المسحّة الهالة، والأنسجة الاصطناعية (التي تلتصق بها الغبار). عدم القيام بالفسوق اليومي عند استخدام الهواء المضغوط للتنظيف.

• وضع المواد التي تحتوي على الصخر الحريري بواسطة في أيكوس بلاستيكيّة توسّع مباشرة (عدم السماح بتراكم النفايات غير المضغوطة).

• لا تيلاك النفايات إلا جزئياً، حتى يمكن إجهاضها بسهولة وتشقّ صحيّة.

• عند إغلاق الأيكوس، يجب أن يتم إخلاء الهواء من الكبس لأجل، لأن هذا الهواء قد يكون ملوثاً بالصخر الحريري، ولكن أغلقه بعناية وضع الكبس المغلق وأنصق عليه ببطافة في كيس بلاستيكيّ آخر متين وواقف.

• أما بالنسبة إلى الفلاطين الأكبر حجماً، فلا توضع في أيكوس (مثل أوراق العزل من الصخر الحريري الكامل)، إلاّ يجب الاحتياط بها على حالها وفقاً في طبقتين من البوليثلاثين مع ضرورة وضع بطافة لاصقة عليها كلمة "حبر صخري " ذلك واحة للع البيان (على سبيل المثال)، ووضع بطافة لاصقة بالطابق الخارجية (على البلاستيك الشفاف).

• أحدث من خطأ يثير التلقّي، عن طريق أتباع نفس المنافذ المسبقة واتصال據 تعلق، منع الإastered العرضي باليكوس أثناء عملية نظافة من المنتهية للعمل إلى مزج جميع النفايات.

• إعداد عينة أصلية من المنطقة للعمل إلى مزج جميع نفايات آمن.

• يجب إعداد النفايات بالكامل عند مغادرة منطقة العمل.

• يجب إخلاء الكبس بالكامل عند إغلاق النفايات بعد استخدامه.

• عند إنشاء النفايات من خلال أوراق منشأة لتنظيف، تمّ التخلص من منشأة الوقاية المستخدمة بإعدادها نفايات ملوثة بالصخر الحريري.

• أخرجو، عبر إهانة الوقاية إزالة مناهج الوقاية الشخصية وأجهزة حماية الجبهة التلفزيّة لتجنب تعرض نفس أو الآخرين للحرير الحريري الذي قد يكون عائقاً بعد العمل الخاص، بل استخدم بدات عمل أشرة واحدة و التي يتم إزالتها والتخلص منها بعد استخدامها باعتبارها ملوثة بالصخر الحريري، أو استخدم بدلاً من ربة عمل قابلة للعسل يمكنها إنزال منها تحت الدش بقبل إزالاتها.

• يجب استخدام مكثفة كهربيّة صنف H لإزالة الغبار عن بدات العمل. ينبغي التعاون مع زملائهم في العمل لتنظيم بدات العمل بالتنزل، وهبذه يمكن من تنظيف الجزء الخلفي منها.
• حافظ على معدات وقائية الجهاز التنفسي في مكانها حتى العملية الأخيرة.
• يجب غسل الأحذية.
• يجب إزالة بدلات العمل، ونقلها إلى الخارج.
• نزع فصل الغبار المصاب.
• تعبئة الجزيء الخارجي من جهاز التنفس الواقي الخاص به.
• تنظيف وتعقيم (لاستخدام إن أمكن) ثم بعد ذلك فقط. قي إزالة معدات الشخصية والجهاز التنفسي الواقي.
• لا تحمل ملابس العمل الخاصة بيك إلى المنزل، إذاً يجب أن يتم التخلص منها إذا كانت بدلة العمل قابلة للرمي أو غسلها في آلة غسيل خاصة لكونها من الملابس الملوثة بالصخر الحربي.

إزالة بلاط الأرضية الذي يحتوي على النيات

إزالة البلاط

النقاط المتبعة المعروفة هي:
• إزالة بملعقة صغيرة رطبة (بمحلول يحتوي خليط نشط مساعد)
• إزالة البلاط من عرض الاصطدام الحراري
• إزالة البلاط دون اعتماد ماء أو ترطيبه بالماء بواسطة الفصل الهزاز.
• إزالة البلاط بالملعقة الصغيرة دون ترطيب.

إزاالة الأراضي الحميدة على الصحر الحربي البلاستيك، عن طريق نزعها دون ترطيب بملعقة صغيرة، يفضل عوضها إلى تجربة كبيرة، مما يؤدي إلى نشذار الغبار في الهواء الموجد بالمكان، والذي قد يتجاوز نسبة الحد الأقصى للعرض المهني.

هناك طرق متطورة متواترة يمكنها من خفض انبعاثات الغبار أثناء إزالة الة: الترطيب بالماء والصقليون سائل، أو بعضاً ترطيب خاصة (بئن ثابت) وأعداد الغاز بواسطة سقال حراري، يليل الأسفل ويقل بكمية تقييم البلاستيكية.

اعتماد الآلات، تسخين البلاط وشفط الغبار، وهي مناسبة تماماً لأعمال الإزالة هذه في الأسطح ذات السماكة الكبيرة، وهي سهلة التنظيف والحماية من عواصف.

التدابير الإجبارية والوقائية

- يجب تنفيذ التدابير الوقائية التالية:
 - وضع لافتات تحذيرية في منطقة العمل ومنع الدخول على الغرباء.
 - إفراغ الغرفة أو المبنى من كلما فيه من الآلات، يجب تغطية كل الأشياء أو التجهيزات التي يصعب تطهيرها من التلوث (أجهزة تغطية والمنشآت الجدارية، الخ) بشرطة بلاستيكية.
 - واقي تثبيت الأجهزة الرئيسية في الهواء الآلية، بإبقاء الهواء، وأنقاصه بلغة من إمكانية تقسيم المواد البلاستيكية.
 - عزل موقعاً العمل عن باقي الأماكن الأخرى (الردهة، ديو السلم، نطاق المبنى) وتعمل الفتحات الهواء والأبواب بشرطة من البلاستيك مشدودة، وأصطلح عزلة للهواء في كل محيط العمل.
 - ضمان تجديد الهواء الآلية.

- ترتيب ممر واحد فقط لوصول إلى المنطقة.
- تجهيز العملي ببناء عملي يستخدم مزحة واحدة ذات غطاء رأس من تصنيف 5، وقارات قابلة للغسل وجهز وتفس واق بتهوية كافية (قائمة مع انتظار)، وهو أحكم من جهاز فر哪儿 الهواء الحر.
- إزالة البلاط عن طريق تسخينه أو ترطيبه وجمع النفايات في أيكس بلاستيكية مختومة كما تتفرّد هذه النفايات، في نهاية العمل، قبل الانسحاب من الموقع يجب إجراء عملية تنظيف دقيقة لكل الأسطح (الأرضيات والحوائط) بواسطة مكنسة آلية مجهزة بفلتر THE أو مبرد بفلتر، معادرة النفايات، بئن بلدة العمل، القناع، ثم محلب إزالة البلاط مبلاط النفايات من المصدر.
- قبل كمية الصرف، يئن بناء العمل، القناع، ثم محلب إزالة البلاط مبلاط النفايات من المصدر.

- يتم توجيه نفايات مواد تهوية الأرضية الحميدة على الصحر الحربي البلاستيكيث إلى مركز تخزين النفايات غير الخطرة (ائفلا 2)، وسوف تخضعها بعض الأشخاص في مرحلة تغليف ثانوية.

أعمال المواد التي تحتوي على الصحر الحربي (MCA) للإثاث

COMETE Engineering/PLINIOS SA

220
(وصلات الصحرى الحريري، العزل (نيج) بالصحرى الحريري)

نعني بالمواد القيمة للتنقيت المواد أو المنتجات التي قد تبعت منها ألياف الصحرى الحريري تحت تأثير التصدام، والاهتزاز أو حركة الهواء.

ومن المواد التي يمكن اعتبارها قابلة للتنقيت تذكر:
• مواد نسيج التربة.
• مواد حفظ الحرارة.
• شظايا الصحرى الحريري النانوية.
• كرتون الصحرى الحريري.
• اللقم، والشاشات، والملح من الصحرى الحريري، الأدبي، والملفلوقات والخلائط ذات الكثافة المنخفضة (أقل من 1).
• لب الصحرى الحريري.
• مسحوقات النفايات، بالغازات، والمواد.
• مسحوقات النفايات

الوضحاء الخاصة باعمال إزالة الصحرى الحريري

بإثراء ذكرات الإخلال لمنح تنفيذ التلوث بالصحرى الحريري، ومنع تعرض الأشخاص الآخرين له من خلال مراقبة الممرات المؤدية إلى الغرف المعلقة الضغط وتطهير العمل والمعدات عند الخروج من الحظيرة، يمكن حصر التلوث بالصحرى الحريري في موقف داخل الحظيرة.

قبل إنشاء حظيرة الإخلال، يجب أن تكون الحظيرة مميزة، وذلك باداة الاحتياطات المناسبة (التي يجب أن تكون قد خُذلت في تقديم مخاطر للضم محاولة التعرض للصحرى الحريري، وبتعلّق الأمر هنا مثال بالملابس الشخصية الرافقة، والأجهزة الواقية للتنفس والمكاس الكهربائية المعتدمة بالاستخدام الخاص بالصحرى الحريري (المكاسات الكهربائية صنف H). وفي الواقع، قد تكون المواد التي تحتوي على الصحرى الحريري معرضة للاهتزاز أثناء إنشاء الحظيرة أو تثبيت المعدات الخاصة بالصحرى الحريري (المكاسات).

يمكن حظيرة الإخلال أن تأخذ شكل مبنى أو قد تكون هيكلًا مفتوحًا تمامًا. ويجب أن تكون الأسطح الموجودة فيها مساحة، وحزمة للماء، والإنابيب يجب أن تكون مغطاة بورق البوليتيتان. وعموما فإن إنشاء المحمية يعتمد فيه على ورق البوليتيتان الشميك، والمقوام (نسمك 250 ميكرون) والذي يجب أن يتم التخلص منه في نهاية العمل عن طريق إنهاء رملة بالصحرى الحريري.

ويجب أن تكون الحظيرة مخصصة أخرى:\n- ذات أرضية مشتركة عازلة للواء وماء ومساحة للمنظف، ذات مساحة مخصصة للنمل والخروج إلى الحظيرة.
- مساحة مخصصة للgrily (�� timely) للنزول النفايات المشعة بشكل السليم (في أكياس أو ملفقة).
- خارج الحظيرة (ببيئة) محدود ضغط الهواء (وتنسيق لوحدة ضغط) مع مصفاة متعمدة جدا، لإنتاج ضغط سلبي طفيف داخل الحظيرة.
- توفير تدفق مستمر للهواء النقي.

ولا يسمح لغير العمل فقط المشاركين لمعدات الوقاية الشخصية ومعدات الحماية النفسية المناسبة بدخول الحظيرة.

بأني يكون هناك إفادات لمحترف تعليمي على خطر التعرض لمادة الصحرى الحريري، ويجب أن يكون النمل مشترك قيد شروط ووجود استخدام المعدات الوقاية. هذه اللائحة الطبية يجب أن تتواكب مع التوافر من القوانين الوطنية المنظمة للعمل.

وحدة إزالة التلوث

من الضروري استخدام وحدة إزالة التلوث بشكل صحيح لمنع ضرر التعرض له. وتكون أساسا من "غرفة نظيفة لتنقيت الملادس" (غالبا ما تسمى المرحلة الأخيرة للخلائط) مصغرة بباب إلى الغلاف وهي مقصورة استعمال تكون في نفس مواصفة بباش أخرى ثم يودي إلى "غرفة تنقيت البلاستيك المقلتة" (مرحلة التلوث الأخيرة). وينزع العملية ملادسهم الحالية في "غرفة مرحلة التنقيط الأخيرة " وضمان كمامات التنفس ومازور العمال الهامين قبل أن يعودوا عبر مقصورة الاستعمال إلى "غرفة مرحلة التلوث الأخرى", وإذا كان ذلك ممكنا، ينبغي أن تكون "غرفة التلوث الأخيرة" موصولية مباشرة بالحظيرة عبر مزرع أمر.

مياوري تثبيت ألياف الظاهر

لإزالة المواد التي تحتوي على الصحرى الحريري، يجب أن يتم اتباع تهيئة إزالة الغبار لمن الياف الصحرى الحريري من الانبعاثات في الهواء (تعريضها للخطر). يمكن للمواد التي تحتوي على الصحرى الحريري أن تطبل عن طريق ضخها باللهاء، ويجب أن

COMETE Engineering/PLINIOS SA

DGEQV-2014
يدافع عامل ترطيب إلى الماء لترطيب فعل للحرير الصخري. ضع الفم لا يكون بالهواء (في الخالق لا يستخدم الهواء أو الغاز لدفع الهواء) يمكن استخدام مادة مسامية لترطيب الأسطح (على سبيل المثال عطاء عزاز، الأحجار، والبطاطس).

تجربة عاملية تكشف المواد تحتوي على الحرير الصخري المرطبة بشكل صحيح في وعاء بريز أن المادة تحتوي على الحرير الصخري يمكن أن تكون متوسطة أكبر باقية الأدوية البودية (مثل كاربينات، الزئبق، مكثفات البراغي) ولا يمكن أن تكون مركبات الغازات الكهربائية (قاطع نهاية والسائل). ويفشل المواد التي تحتوي على الحرير الصخري ويفشل في تحليلها أو لها، والاقتراب تدريجيا من مادة شبه مثابرة. لون الخصائص المذكورة أعلاه على سبيل المثال، تكون الدفء والقوف والمصائد، وتواصل القدرة بعد مستلزمات الجهاز. وعند الانتهاء من إدراك الجحيم الأكبر من المواد التي تحتوي على الحبيبات الحرارية، فإن كميات صغيرة قد تقع على الأسطح، وتكون المواد المختلطة في أية على الحبيبات الحرارية من الأمثلة على الأسطح مثيرة البخار (مثل على أسطح سجائر مرتفعة) وحافظ على هذا استخدام الأدوية البودية للحرير الصخري المنفرد، ولكن يمكن أن تكون بعض الآلات الكهربائية فعالة لإزالة الحرير الصخري المتألف بوجه. وفي هذه الحالات، يجب استخدام الآلات الكهربائية بفعل مواد فائقة من فواعلها مع ضوء تأثير معدات إزالة الغبار (الربيع، الرش أو ضخ المياه دون الاعتماد على الهواء) أو الشفط المضغوط).

النظافة النهائية

أثناء العمل يجب أن تأتي جميع المدعات ومنطقة العمل تنظيفها بالكامل. وأثناء وضع القياسات التي تحتوي على الحرير الصخري (في باساد الأطراف) يجب أن تأتي جميعها. ويمكن استخدام المدعات والقطع لجميع الأطقم (الفرشاة ليست مناسبة). ويمكن استخدام النماذج أو المشتقات الناتجة لتنظيف الأسطح، ويجب استبدال المياه المستعملة (للتي تحتوي على النثوق المشرّب عبر السوق). وإذا تم تنظيف الأسطح بفقط ضغط مياة فإنه ينبغي أن تزيل ضغط المياه، أو الشخص بحاجة التوقف لإزالة التلفيق. بعد إزالة كل الحرير الصخري ويتم أن تأتي النظارة من فناء الحرير الصخري ومعجم الأدوات والمعدات، يجب تنظيف الموقع الذي هو جزء من النظارة. ويجب استخدام مكسة كهربائية صفح H التي تحتوي على التفاصيل الصغيرة، ثم يجب عناية أن نستخدم المستلزمات أو الأدوات البودية، وإنما التي مكان استخدمها للتنظيف المستمرة، والقطع، والأدوات، والطرقات، لأنماط منها يجب شرح مثال على هذه الصفائح واللوحة دوياً مثالاً، كما أن الاستخدام المناسبة لإزالة الحرير الصخري قبل أن يبتاعها عن سواها. وإذا كان هناك ما لم يمكن استخدام صفائح مشتقات أو صفائح البولي الببتيد يمكن أن يتم استبدال المعدات المنفرد حسب الظروف على سبيل المثال بسلطات رقيقة أو صفحات البولي الببتيد يمكن أن يتم استبدالها من الدفاع عن نظام منغمة، ويعتمد هذا على لغز النظارة. يمكن أن يتم للبيئة. ويجب تنظيف الأسطح المختلطة على مثل تلك اللوحات والقطع، ولكن يمكن لنفس هذه畅 مثيل من سواها.Hamel.

الخصائص في الأدبيات والتفاوتات المتزامنة:

بالمثل (CRDA ONAS، SONEDE) من المستحيل التحلل في النطاقات الصحية من تحللها للحرير الصخري الإستيرمسي، وخاصة عند كبار السن أو الكبار، ومن الناحية من عمليات صيانة وصيانة الشبكات التي وقعت في موافق (قائمة من المستودع أو المنطقية التي تتبناها). المستقبل من الأفضل أن تتبع السلوك التكلفة والأثر أكثر مراعاة للبيئة، أو ترك شبكات الحرير الصخري في مكانها (węffrow) ووضع مдать في مدة طويلة يضاف إلى النغمة، والثقل أن يتم استخدام المazines التي هي في حالة حادة عن طريق طبهاة بالكل، ويفشل النظافة.

إذا تم تصنيع في منتجات الحرير الصخري يمر عبر عدة مراحل:

- دراسة كيفية إزالة التلوث (كل مستند على حدة)
- ترطيب الحيوانات والتفاوتات
- قزحية والخلايا التي يمكن استخدامهم لاحقاً على النطاقات الببتيد الصغيرة، وتصلب بالكل، وتصلب بالكل، وتصلب بالكل
- تحلل الحرير الصخري للماء لدفع الزيت والملح، والغاز ذو الهواء، وصفيّة النفاذية، والملح ذو الهواء، وصفيّة النفاذية
- تحلل الحرير الصخري لدفع الزيت والملح، والغاز ذو الهواء، وصفيّة النفاذية، والملح ذو الهواء، وصفيّة النفاذية
- تحلل الحرير الصخري لدفع الزيت والملح، والغاز ذو الهواء، وصفيّة النفاذية، والملح ذو الهواء، وصفيّة النفاذية
- تحلل الحرير الصخري لدفع الزيت والملح، والغاز ذو الهواء، وصفيّة النفاذية، والملح ذو الهواء، وصفيّة النفاذية

تهيئة النواة للفناء جمالها إلى 100 م في كل مستودع

- حتى ويجري أن تكون في مكانة من دون الحرير لدمار نفاذية

- رصده تجهيز بهاء من حيث وجود أليف الحرير الصخري

- إعادة استخدام مادة النزف

COMETE Engineering/PLUNIOS SA
XII.12.

typologie et transformation

Il est nécessaire de poser un plan d'action visant à améliorer la gestion des déchets amiantés en Tunisie. Ce plan doit prendre en compte les aspects techniques, économiques et sociaux.

La typologie des déchets amiantés peut être classée en plusieurs catégories, dont:

- Déchets industriels (amianté contenu dans des produits)
- Déchets domestiques (amianté contenu dans des matériels)
- Déchets de construction (amianté contenu dans des matériaux)
- Déchets de démantèlement (amianté contenu dans des composants)

La transformation des déchets amiantés peut se faire de différentes manières, dont:

- Transformation physique (écrasement, émiettage)
- Transformation chimique (traitement avec un agent chimique)
- Transformation biologique (décomposition par des micro-organismes)
- Transformation énergétique (conversion en énergie)

La gestion des déchets amiantés doit être faite de manière à minimiser les risques pour la santé humaine et l'environnement. Il est nécessaire de mettre en place des politiques et des réglementations appropriées pour garantir la sécurité des populations et des travailleurs.

Il est également important de promouvoir l'éducation sur les risques et les mesures à prendre face aux déchets amiantés. Cela permet d'augmenter la conscience des citoyens sur l'importance de la gestion des déchets amiantés.

En conclusion, la gestion des déchets amiantés en Tunisie nécessite une approche intégrale, qui combine des mesures techniques, économiques et sociales pour assurer la sécurité des populations et l'environnement.
يجب أن تكون عبارة عن كلة حزمة تحتوي نفايات الصخر الحريري، بطاقة تتبٌّ به بشكل واضح إلى أن الكيس تحتوي على الصخر الحريري، أي على منتج خطير. بالنسبة إلى دول المجموعة الأوروبية CEE فإن نموذج وضع البطاقة يجب أن يوضع بهذه الطريقة. وفضلاً عن عملية وضع البطاقة، يفرض دول المجموعة الأوروبية CEE في حال نقل المعلقات التي تحتوي على الصخر الحريري المنافذ (العبار، الفلاتر)، وضع بطاقات تخليصية. وتتضمن هذه الأغلفة الخارجيّة للنقل نفايات، كما يجب أن تكون هذه البطاقة ظاهرة للعيان من جهة الأغلفة المتعاكستين، ويجب أن تكون مربّية لطة منح الحالية أو وسيلة التغلق.

رفع نفايات

يجب أن تكون شروط رفع نفايات الصخر الحريري المعنية (في إكياس، حاويات كبيرة للمواد الخطرة)، GRV، يعتبر النقل في حالة ظهور في كل مراحل النقل وإجراءات الإزالة

- الأغلفة
- الواجهة
- الإشعارات

امتدادات النقاط الحريري بحسب محبطة للتعامل

يجب استخدام وسائل رفع، مثل عربات الرّفع اليدويّة أو الآلية، حاويات ذات عجلات، الخ. ويمكن استخدام كلّ أنظمة الرّفع الملائمة. ويعمل معًا يعتمدها بواسطة شاحنة.

النقل

بالمتميّة إلى المجموعة الأوروبية، تصنّف المواد ذات الخطر العالي على الصخر الحريري كنفايات (أو مواد) خطرة من الصنف 9 " الخطر العالمي والتابع للخطر العالي، لتكون بطاقة للمجموعة الأمنية للم grupo السائل).

في حالة نقل نفايات الصخر الحريري السابق، تطبق اللوائح الخاصة بالنقل الخطرة في مجملها. وخاصة فيما يتعلق ب:

- ضرورة احترام وسيلة النقل المتميزة مع قانون نقل البضائع الأوروبية (ADR)
- ضرورة إتخاذ طرق تعليق النفايات (التفريغ، وضع البطاقات، إلخ)
- ضرورة الالتزام بقواعد النقل، في حالة ، إلخ
- ضرورة تكون كل القطع المتصلّبة في عملية نقل البضائع الخطرة (من يقومون بالتفريغ، التحميل، خدمة الشراء، العمليات اللوجستية...)

يجب أن تكون الوثائق الخاصة بالمعلومات موجودة في حملة:

- شهادة باسم السّائق في الحاويات في مجال قانون نقل البضائع الأوروبية (ADR) (تكون مارية المفعول، يجب أن يستظهر
- تعليمات السلامة يجب أن تكون مطبقة مع الفصول 3 و4 و5 من قانون نقل البضائع الأوروبي (ADR)
- ضرورة توفير وصول إرشادات في مزاولة نشاط نقل النفايات الخطرة
- ضرورة توفير وتفريج نقاط النقل الح��제
- عدد المعلقات المحمولة، وفقًا لل الحاجة جليّة، المحمولة بطرق مختلفة
- معايير الوقاية اللازمة لعدد من الطرق
- دفعات نقل خاصة بالخليج (المذكورة في تعليمات السلامة)
- وضع علامتين في النفايات، ثبتين في مقدمة العربية ومذررتها.

اللغة العربية

Synthèse de l’Etude sur les usages de l’amiante et la gestion des déchets amiantés en Tunisie

DGEQV-2014

COMETE Engineering/PLINIOS SA

224
يمكن إعطاء نظريات الصخر الحراري مباشرة وفقًا للقاعدة المتاحة 186، ومن كل التفاعلات المذكورة سابقا، يُشير أن تكون مهولة بحجاب بطريقة عامة، ولاتجنب النفايات البالغة أثناء كل مراحل عملية التنقيع، إذا أجريت هزامات صممتين أو اكتشافات (تحلل، نقل، تعقيم)، يجب أن تكون هزامات مشروعة ومستفيدة في شروط ذات حاويات مغطاة أو في عربات مغاطة أو على أنها عطاء بالانتقالي (بما يمنع منها نقلها بواسطة وسائل النقل).

التّفاصيل من النفايات:

هذا العديد من التفاصيل لإزالة نظريات الصخر الحراري:

- التفاصيل منها في مكب النفايات في الموقع:

- وتعزّز الأمر بدراسة، والاختيار وإنشاء مكب نظريات الصخر الحراري خاصًا في الموقع ذات الإدارة الجيدة. ومع ذلك نحن نوصي، كما هو واضح أعلاه، أن يكون هذا المكب يُشتري، وبمجرد أن يقع إنشاء، فهي تحت سلطة ملك الأرض. وفقاً للحالة يمكن تقديم المساحة الخاصة للمكب، وبعدها يمكن تكييف إنشاءه.

التّفاصيل من النفايات في مكب خارج الموقع:

هو أمر ممكن، لكنه يستلزم تفاصيل إضافية للفعلي، وتجنّب التفاصيل صخر حراري من موقع كثيرة. إضافة إلى أنها يجب أن تكون مختصة في الصخر الحراري. مع أو دون نتائج، فإن النظريات يقع منها في المكب الذي هو عبارة عن مركز محروض لدفن النفايات الخطيرة.

في أوكرانيا، استخدمت الحقول المضيفة القديمة (المعدن، الأراضي، المواد العضوية) كمكبات للانتاجات الخطيرة. في حين، يبدو تعامل تونس في هذه الحالة سيّئًا.

النتيجة:

عارة على ذلك، خارج مواقع دفن النفايات، يوجد في أوكرانيا حاليًا خيارات حرارية لتدوير الصخر الحراري. ونلاحظ ذلك، نحن N

تمثل هذه العملية في داخل الصحراري الحراري في وقت حراري. ويتم تقييم المختبر قبلي إجراء اختباراته الرسمية، في ظروف حراري تحت الظروف التشريعيّة الثابتة، فإن الندافيّة (النلاف) خالي من الصحراري الحراري تحت الظروف التشريعيّة الثابتة. فإذا تم استخدام تلك النافلات، فإن النافلات يتم إدخالها في النظام التدويري للطاقة الحرارية والذي يستخدم لاغلاق الصحراري الحراري. ومن ثم، يتم استخدام اللحاء والصحراري الحراري لاستخدام النافلات في النظام تدويري للطاقة الحرارية.

في إطار هذه الدراسة، ومع الأخذ بعين الاعتبار، فإن الخصائص النافلات الصحراري الحراري في تونس (خاصة بالنسبة إلى الصحراري الحراري الإسبانتي)، ولشدريّة وخصائص الجوانب الخاصة، فإن خيار دفن النفايات يتطلب، بمحاوارته الحل.

الأثر من الناحية الهيكلية والأدوات الاقتصادية.

يتم استخدام النافلات التي تحتوي على الصحراري الحراري في منشآت مخصصة للنافلات، في مجوفات مخصصة للحرار.

الصحراري الحراري:

هذا النوع من المنشآت هو الوحيد المؤهل للتنقيع النافلات، والباردة الصحراري الحراري، مثل الأشعة البلاستيكية، علاج النفايات، ونفايات، وإعادة التغليف، طبقي، ونفايات، ونفايات، ونفايات، من الصحراري الحراري، والصحراري الحراري، والصحراري الحراري، من النفايات. أما بالنسبة إلى الصحراري الحاصل، فيمكن، فإن لا يكون هناك في الغالب.

طريقة التشخيص وإجراءات تقييم حالة المنتجات، والدبليو، نتفاقم، نتفاقم، نتفاقم، نتفاقم، نتفاقم، نتفاقم، نتفاقم، N

النتيجة تقييم المخاطر:

كل التفاصيل التي أجريت على المباني كانت بالمخاطر التي قد تمكّنها. ويتم إجراء تقييم المخاطر المرتبطة بالصهر الحراري وفقًا لدليل الإجراءات لتحديد الأمان الخطرة من النظام البريطاني للأمان والوقاية (HSG264 الصحراري الحراري: دليل HSG264 الصحراري الحراري، 2012، المملكة المتحدة).

COMETE Engineering/PLINIOS SA

225
Synthèse de l’Étude sur les usages de l’amiante et la gestion des déchets amiants en Tunisie

DGEQV-2014

للماء
البلاط
التالفة
عزل
الحريري
الصفر
الصّمغ
combe
CHV
CHV
CMT

COMETE Engineering/PLINIOS SA 226
أدوات تقييم مخاطر المواد:

تم تصنيف المخاطر المرتبطة بوجود المواد التي تحتوي على الصخر الحريري في المواقع التي تم تفديها كما في الجدول التالي.

<table>
<thead>
<tr>
<th>النوع الخطر</th>
<th>الوصف</th>
<th>التوصيف</th>
</tr>
</thead>
<tbody>
<tr>
<td>مرتفع</td>
<td>القيام بالإجراءات الفورية/التكملة أو العمل على إزالة التلوث من خلال اعتماد طرفي عملية تمكينية لطبيعة الصخر الحريري والمخاطر المتماصلة عند.</td>
<td>استعمال أعمال التدخل</td>
</tr>
<tr>
<td>متوسط</td>
<td>تنفيذ خطة تصرف ملائمة. نظرًا لإمكانية تلف أو تضرر المواد التي تحتوي على الصخر الحريري بسبب التخطيط أو الإعداد لعملية إزالة ضرورية أو التليف و ذلك حسب الأولوية.</td>
<td>من خلال إعداد الجداول الأكثر ملاءمة للتعامل مع الصخر الحريري.</td>
</tr>
<tr>
<td>ضعيف</td>
<td>وضع علامات أو إشارات لتجنب الانتظار لوجود الصخر الحريري كلما أمكن ذلك مع الأخطاء الصغيرة و البالغة عند تدميرها أو الإخلال بها.</td>
<td>على الصخور الحريري أو الفلوس في الساحة.</td>
</tr>
<tr>
<td>ضعيف جدا</td>
<td>تنفيذ خطة تصرف ملائمة</td>
<td>بصفة كلما أمكن ذلك مع الأخطاء الصغيرة و البالغة عند تدميرها أو الإخلال بها.</td>
</tr>
</tbody>
</table>

أنواع المخاطر التي تم تقييمها:

نسبة خطر عالية: استعمال أعمال التدخل

القيام بالإجراءات الفورية/التكملة أو العمل على إزالة التلوث من خلال اعتماد طرفي عملية تمكينية لطبيعة الصخر الحريري و المخاطر المتماصلة عند. فهي هذه الفئة تمت إعداد المادّة المستقلة من الصخر الحريري و الموجودة في أماكن العمل خطرًا على الصحة واضحا ووشيكة وبالإضافة إلى ذلك، يمكن أن ينتج عن التدخل المعني بالامر على الفور.

نسبة خطر متوسط: استعمال أعمال التدخل

فهي هذه الفئة من الصخور حتى يتدحرج الصخر الحريري خطرًا بالغا على الصحة ولكنها ليست وشيكة فمن الصخور في مثل هذه الحالات تهيئة الموقع. في هذا النوع من الخطر يمكن على كل موقع تبين أثناء تفهم أنه يجب على مواد من الصخور الحريري. ولها أدوار واجب تؤثر على تسيير تعزيز و اقتناع جيدة (مواد متعلقة مع عدم وجود علامات تلف على سبيل المثال).

نسبة خطر ضعيف جدا وقليلة: استعمال أعمال التدخل

اعتماد خطة تهيئة ملائمة تتعلق وإعداد وابتكار المنتج الذي يجعل على الصخر الحريري بطريقة عملية مع ضمان الحفاظ الجيد للطاقة و صيانة جميع المواقع المتاحة، وفقا لذلك.

وفي هذه الوصية فإن المادّة المستقلة من الصخر الحريري لا تمثل خطرا على الصحة. لذلك فإنه من المستحسن أن يترك المسؤولون خطة تهيئة تسمح بتعليم المخاطر لضمان صيانة المواد في طرفي تحديد إلى أقصى حد خطر على صحة المصابين ودور واصبح الصادق في ذلك المواقع.

ومن االتوصيات لظاهرة النقرة:

1- وضع الالعاب الأكثر ملاءمة و
2- تثقيف جميع المواد التي تحتوي على الصخر الحريري
3- توصيف المجال وتحديد مواقع هذه المواد.
Synthèse de l’Etude sur les usages de l’amiante et la gestion des déchets amiants en Tunisie

DGEQV-2014

COMETE Engineering/PLINIOS SA

228
RÉFÉRENCES:

RESSOURCES:

Institut National de Recherche et de Sécurité (INRS) *Fiche Métier amiante (a series for several trades e.g. pipelayer, plumber-heating engineer, bricklayer, electrician)*.

UK Health and Safety Executive. Controlled asbestos stripping techniques for work requiring a licence. HSG189/1. HSE Books.

UK Health and Safety Executive. The *selection, use and maintenance of respiratory protective equipment* – a practical guide HSG53. HSE Books ISBN 0 7176 1537 5
